
Proceedings of the 1998 Summer Computer Simulation Conference, SCSC'98, Reno, Nevada, USA

MODELICA — AN INTERNATIONAL EFFORT TO DESIGN
AN OBJECT-ORIENTED MODELING LANGUAGE

Hilding Elmqvist∗ Sven Erik Mattsson† Martin Otter‡

P Dynasim AB, Research Park Ideon, SE-223 70 Lund, Sweden, (Elmqvist@Dynasim.se)
† Dept. of Automatic Control, Lund University, Box 118, SE-221 00 Lund, Sweden, (SvenErik@control.LTH.se)

‡ DLR Oberpfaffenhofen, D-82230 Wessling, Germany, (Martin.Otter@DLR.de)

KEYWORDS

Modelica, modeling language, object-orientation, hi-
erarchical systems, differential-algebraic equations

ABSTRACT

A new uniform language called ModelicaTM for phys-
ical modeling has been developed in an international
effort. The main objective is to make it easy to ex-
change models and model libraries. The design ap-
proach builds on non-causal modeling with true or-
dinary differential and algebraic equations and the
use of object-oriented constructs to facilitate reuse of
modeling knowledge. The paper gives an overview of
Modelica and plans for the further development.

INTRODUCTION

Mathematical modeling and simulation are key tech-
nologies in engineering. Unfortunately, there is an
interoperability problem amongst the large variety
of modeling and simulation environments available
today. The trend towards more complex and het-
erogeneous technical systems, makes the situation
even worse. The main cause of this problem is the
absence of a state-of-the-art, standardized external
model representation. Modeling languages, where
employed, often do not adequately support the struc-
turing of large, complex models and the process of
model evolution in general.

An international effort started in September 1996
to design a new uniform language called Modelica1

for physical modeling. Version 1.0 of Modelica was
finished in September 1997.

Modelica is intended for modeling within many
application domains (electrical circuits, multi-body
systems, drive trains, hydraulics, thermodynamical
systems, chemical systems etc.) and possibly using
several formalisms (ordinary differential equations
(ODE), differential-algebraic equations (DAE), bond

1ModelicaTM is a trade mark of the Modelica Design Group

graphs, finite state automata, Petri nets etc.). Tools
which might be general purpose or specialized to
certain formalism and/or domain will store the
models in the Modelica format in order to allow
exchange of models between tools and between users
and thus reuse will be promoted.

This paper gives an introduction to Modelica
by means of some small examples. An overview
of the work on supporting libraries and tools is
given as well as the plans for further development.
Another aim of the paper is to interest individuals
to participate in developing Modelica further.

MODELICA FUNDAMENTALS

As an introduction to Modelica, consider modeling of
a simple servo system as defined in Fig. 1.

The system can be broken up into a set of con-
nected components: an electrical motor, a gearbox, a
load and a control system.

A Modelica model of the servo system is given
in Fig. 2. It is a composite model which specifies the
topology of the system to be modeled in terms of com-
ponents and connections between the components.
The statement “Gearbox gearbox(ratio=100);” de-
clares a component gearbox of class Gearbox and sets
the default value of the gear ratio to 100.

Much of the Modelica syntax is normally hidden
from the end-user. Models of standard components
are typically available in model libraries. Using
a graphical model editor, a model can be defined
by drawing a model diagram as shown in Fig. 1,

motor

controller

gearbox=100

load=10

Figure 1 A simple servo system.

1



model SimpleServoSystem

Motor motor;

Controller controller;

Gearbox gearbox(ratio=100);

Shaft load(J=10);

equation
connect (controller.out, motor.in);

connect (motor.mr , controller.in1);

connect (motor.mw , controller.in2);

connect (motor.flange , gearbox.p);

connect (gearbox.n , load.p);

end SimpleServoSystem;

Figure 2 A Modelica model of the system in Fig. 1.

by positioning icons that represent the models of
the components, drawing connections and giving
parameter values in dialogue boxes. Constructs for
including graphical annotations in Modelica make
icons and model diagrams portable.

A component model may be a composite model to
support hierarchical modeling. The object diagram
of the model class Motor is shown in Fig. 3.

Variables
Physical modeling deals with specifying relations
between physical quantities. For the servo system
quantities such as angle and torque are of interest.
Their types are declared in Modelica as

type Angle = Real(quantity = "Angle",

unit = "rad",

displayUnit = "deg");

type Torque = Real(quantity = "Torque",

unit = "N.m");

where Real is a predefined type, which has a set of
attributes such as name of quantity, unit of measure,
default display unit for input and output, minimum
value, maximum value and initial value.

V
s

emf

La=
2

Ra=250

G

rw

Inertia=2

ua

Figure 3 A motor model.

To simplify the use of Modelica and to support
compatibility, there is an extensive standard library
of type definitions, always available with a Model-
ica translator. These type definitions are based on
the naming conventions for physical quantities of the
international standards ISO 31-1992 “General prin-
ciples concerning quantities, units and symbols”.

Connectors and Connections
Connections specify interactions between compo-
nents. A connector should contain all quantities
needed to describe the interaction. Voltage and cur-
rent are needed for electrical components.

connector Pin

Voltage v;

flow Current i;

end Pin;

A connection, connect (Pin1, Pin2), with Pin1 and
Pin2 of connector class Pin, connects the two pins
such that they form one node. This implies two
equations, namely Pin1.v = Pin2.v and Pin1.i +

Pin2.i = 0. The first equation indicates that the
voltages on both branches connected together are
the same, and the second corresponds to Kirchhoff ’s
current law saying that the current sums to zero at
a node. Similar laws apply to flow rates in a piping
network and to forces and torques in a mechanical
system. The sum-to-zero equations are generated
when the prefix flow is used in the connector
declarations. In Modelica it is assumed that the
value is positive when the current or the flow is into
the component.

To describe the interaction between two drive
train elements, angle and torque are needed:

connector Flange

Angle r;

flow Torque t;

end Flange;

Defining a set of connector classes is a good
start when developing model libraries for a new
application domain. It promotes compatibility of the
component models. The Modelica Standard Library
provides connectors for many application domains.

Partial models and inheritance

A very important feature in order to build reusable
descriptions is to define and reuse partial models. A
common property of many electrical components is
that they have two pins. This means that it is useful
to define an interface model class TwoPin, that has
two pins, p and n, and a quantity, v, that defines the
voltage drop across the component.

2



partial model TwoPin

Pin p, n;

Voltage v;

equation
v = p.v - n.v; p.i + n.i = 0;

end TwoPin;

The equations define common relations between
quantities of a simple electrical component. The
keyword partial indicates that the model class
is incomplete. To be useful, a constitutive equation
must be added. To define a model for a resistor, start
from TwoPin and add a parameter for the resistance
and Ohm’s law to define the behavior.

model Resistor "Ideal resistor"

extends TwoPin;

parameter Resistance R;

equation
R*p.i = v;

end Resistor;

A string between the name of a class and its body
is treated as a comment attribute. Tools may display
this documentation in special ways. The keyword
parameter specifies that the quantity is constant
during a simulation experiment, but can change
values between experiments.

For the mechanical parts, it is also useful to
define a shell model with flange connectors,

partial model TwoFlange

Flange p, n;

end TwoFlange;

A model of a rotating inertia is given by

model Shaft

extends TwoFlange;

parameter Inertia J = 1;

AngularVelocity w;

equation
p.r = n.r;

der(p.r) = w;

J*der(w) = p.t + n.t;

end Shaft;

where der (w) means the time derivative of w.

THE IDEAS BEHIND MODELICA

Modelica is aimed to be a de-facto standard for
representing models and to support model exchange.

Among the recent research results in modeling
and simulation the two concepts object-oriented and
non-causal modeling have had a strong impact on
the Modelica design. The combined power of the two
concepts together with proven technology from exist-

ing modeling languages (ASCEND, Dymola, gProms,
NMF, ObjectMath, Omola, SIDOPS+, Smile, U.L.M.,
VHDL-AMS etc.) justify a new attempt at introduc-
ing interoperability and openness to the world of
modeling and simulation systems.

Object-oriented modeling
Model classes and their instantiation form the ba-
sis of hierarchical modeling. Connectors and con-
nections correspond to physical connections of com-
ponents. Inheritance supports easy adaptation of
components. These concepts can be successfully em-
ployed to support hierarchical structuring, reuse and
evolution of large and complex models independent
from the application domain and specialized graph-
ical formalisms.

Non-Causal Modeling
Graphical system input tools are an important part
of a simulationist’s toolkit. However, graphical sys-
tem input on its own is not sufficient to solve all
problems. It is important to have an appropriate
mathematical framework for representing behavior.
Most of the general-purpose simulation software on
the market such as ACSL, SIMULINK and System-
Build assume that a system can be decomposed into
block diagram structures with causal interactions.
This means that the models are expressed as an
interconnection of submodels on explicit state-space
form, dx

dt � f (x, u) and y � g(x, u), where u is input
and y is output. It is rare that a natural decompo-
sition into subsystems lead to such a model. Often
a significant effort in terms of analysis and analyti-
cal transformations is needed to obtain a problem in
this form. It requires a lot of engineering skills and
manpower and it is error-prone.

In Modelica it is possible to write balance and
constitutive equations in their natural forms as ordi-
nary differential equations and algebraic equations,
so called differential-algebraic equation (DAE) sys-
tems. Modelica has been carefully designed in such a
way that computer algebra can be utilized to achieve
as efficient simulation code as if the model would be
converted to ODE form manually. See Cellier and
Elmqvist (1993) and Mattsson et al. (1993).

For example, define a gearbox model simply as

model Gearbox "Ideal gearbox, no inertia"

extends TwoFlange;

parameter Real ratio;

equation
p.r = ratio*n.r;

ratio*p.t = n.t;

end Gearbox;

3



without bothering about what are inputs from a com-
putational point of view and use it as a component
model, when modeling the servo system in Fig. 1.

Note, that this use actually leads to a non-trivial
simulation problem. The ideal gearbox is rigidly
connected to a rotating inertia on each side. It means
the model includes two rigidly connected inertias,
since there is no flexibility in the ideal gearbox.
The angular position as well as the velocity of
the two inertias should be equal. All of these four
differentiated variables cannot be state variables
with their own independent initial values.

A DAE problem, which includes constraints be-
tween differentiated variables is sometimes called a
“high index DAE”. When converting it to ODE form,
it is necessary to differentiate some equations and
the set of state variables can be selected smaller than
the set of differentiated variables. In the servo exam-
ple, the position constraint needs to be differentiated
twice to calculate the reaction torque in the coupling,
and it is sufficient to select the angle and velocity
of either inertia as state variables. The constraint
leads to a linear system of simultaneous equations
involving angular accelerations and torques. A sym-
bolic solution will contain a determinant of the form
“J1+J2 ⋅ratio2”. The tool thus automatically deduces
how inertia is transformed through a gearbox.

The need to differentiate also makes numerical
solution of the original high index DAE problem
difficult and most of today’s numerical DAE solvers
fails, because error and step-size control is quite
different for integration and differentiation. There
is an efficient algorithm by Pantelides (1988) for
the determination of what equations to differentiate
and an algorithm for selection of state variables by
Mattsson and Söderlind (1993).

ADVANCED MODELING FEATURES

The modeling power of Modelica is large. Some of the
more powerful constructs are summarized below.

Modeling of, for example, multi-body systems and
control systems is done conveniently by utilizing
matrix equations. Multi-dimensional matrices and
the usual matrix operators and matrix functions are
thus supported in Modelica. It is also possible to
have arrays of components and to define regular
connection patterns. A typical usage is the modeling
of a distillation column which consists of a set of
trays connected in series. The use of component
arrays for spatial discretization when modeling heat
exchangers is illustrated in Mattsson (1997).

We have so far discussed component parameters

like the resistance value. Reuse of model library com-
ponents is further supported by allowing also model
class parameters. An example is a controlled plant
where some PID controllers are replaced with auto
tuning controllers. It is of course possible to just
replace those controllers in a graphical user envi-
ronment, i.e., to create a new model. The problem
with this solution is that two models must be main-
tained. Modelica has the capability to instead just
substitute the model class of certain components us-
ing a language construct at the highest hierarchical
level, so only one version of the rest of the model is
needed. The use of model class parameters to sup-
port machine-medium decomposition is illustrated in
Mattsson (1997) and Ernst et al. (1997).

Modelica supports hybrid modeling. Realistic
physical models often contain discontinuities, dis-
crete events or changes of structure. Examples are
relays, switches, friction, impact, sampled data sys-
tems etc. Modelica has introduced special language
constructs allowing a simulator to introduce effi-
cient handling of such events. Special design em-
phasis was given to synchronization and propaga-
tion of events and the possibility to find consistent
restarting conditions after an event. Modelica sup-
ports development of efficient model libraries for fi-
nite state machines and Petri nets. Modeling of auto-
matic gearboxes in Modelica for the purpose of real-
time simulation is described in Otter et al. (1997).
Such models are non-trivial because of the varying
structure during gear shift utilizing clutches, free
wheels and brakes.

Algorithms and functions are supported in Mod-
elica for modeling parts of a system in procedural
programming style.

STANDARD LIBRARIES

In order that Modelica is useful for model exchange,
it is important that libraries of the most commonly
used components are available, ready to use, and
sharable between applications. For this reason, an
extensive Modelica base library is under develop-
ment which will become an intrinsic part of Model-
ica. The base library consists of the following parts:

(a) Mathematical functions, such as sin, ln,

(b) Type definitions, such as Angle, Voltage,

(c) Interface definitions, such as Pin, Flange,

(d) Component libraries from various domains.

Predefined quantity types and connectors are
useful for standardization of the interfaces between

4



components and therefore achieve model compatibil-
ity without having to resort to explicit coordination
of modeling activities.

Component libraries are mainly derived from al-
ready existing model libraries from various object-
oriented modeling systems. They are realized by
specialists in the respective area, taking advantage
of the new features of Modelica not available in
the original modeling system. Developing such li-
braries from scratch would not be possible in the
expected time frame. Libraries of the following areas
are under development: input/output blocks, elec-
tric and electronic components (SPICE3 elements),
electric power systems, drive trains and gear boxes,
3D-mechanical systems (multi-body systems), hy-
draulic systems, 1D thermo-fluid flow (based on the
finite volume method), aircraft flight system dynam-
ics components, bond graphs, finite state machines
and Petri nets.

MODELICA TOOLS

A partial translator for Modelica was developed in
parallel with the Modelica design work and used
by the members of the design team to verify fea-
sibility of the various constructs. It was modified
after each design meeting to reflect the current
design. The output of the translator was a “flat-
tened model” which could be simulated in Dymola
[Elmqvist et al. (1996)]. Dymola has then been ex-
tended with graphical support for composition and
browsing of Modelica models. Several other vendors
are also developing tools.

A formal semantic specification of Modelica is
made using the tool RML at University of Linköping,
Sweden. This tool generates a runnable program
which produces a “flattened model” consisting of a
set of variables and a set of equations. It will thus
be possible for a tool builder to compare how a tool
translates a model with how it should be translated
according to the formal definition.

Model export from Simnon and Omola has been
developed. Model export from 20Sim and converters
from Simulink mdl-format and Spice are planned.

Further work on Modelica tools and model li-
braries is also done within a project supported by the
Swedish National Board for Industrial and Technical
Development, NUTEK.

DIRECTIONS OF FUTURE DEVELOPMENT

The Modelica design effort started in the continuous
time domain since there is a common mathematical

framework in the form of differential-algebraic equa-
tions (DAE) and there are several existing modeling
languages based on similar ideas. There is also sig-
nificant experience of using these languages in var-
ious applications. It thus seemed to be appropriate
to collect all knowledge and experience and design a
new unified modeling language or neutral format for
model representation. The short-range goal was to
design a modeling language for differential-algebraic
equation systems with some discrete event features
to handle discontinuities and sampled systems. The
design should be extendible in order that the goal
can be expanded to design a multi-formalism, multi-
domain, general-purpose modeling language.

There is a need to consider extensions of Mod-
elica for handling of partial differential equations,
discrete event models, etc. Some of these areas are
discussed below.

Partial Differential Equations
The underlying laws of a model of a technical system
are often of the form of partial differential equations
(PDE). The DAE form is then an approximation
where certain quantities are considered independent
of the spatial coordinates within a certain object.

For certain phenomena like heat conduction, con-
vection, laminar and turbulent flows, and vibra-
tions in flexible mechanical structures, more accu-
rate PDE models might be needed to capture the
detailed behaviour.

A PDE model is defined by (1) a partial differen-
tial equation, (2) the domain of validity of the PDE
and (3) boundary conditions for spatial borders and
initial conditions.

It must be possible to express partial derivatives
in Modelica. The domain of validity is typically a
geometrical domain in 1–3 dimensions. A variety
of geometry formats are used by different CAD
software. To support exchange it is necessary to have
an application independent format for representing
geometry in Modelica.

Discrete Event Models
Further model approximations are done when quan-
tities are considered to be constant over intervals of
time, i.e. when dealing with discrete event models.
Modelica already have features for handling discrete
variables and describe how they are changed. How-
ever, many issues of standard discrete event pack-
ages have not been considered yet, such as: func-
tion library for various random distributions, queue
handling, how to gather statistical information, pro-
cesses and their interaction, animation features, etc.

5



It would be possible to extend Modelica with such
features.

However, there are also many different for-
malisms for discrete event modeling, such as: pro-
cess oriented, activity oriented, Petri nets, Grafcet,
DEVS, State charts and VHDL (discrete circuit mod-
eling). There are also many discrete event programs
available. In certain cases, modeling is done in a
standard programming language like C++ or Java
with the use of a library of standard functions.

Probably, Modelica should be both extended with
basic discrete event features, as well as having ap-
propriate interfaces defined for coupling to external
discrete event packages.

Simulator Environment
Most issues about simulating a Modelica model is
an internal matter for the simulator. However, for
hardware-in-the-loop simulation one typically needs
to specify which fixed step-size algorithm and what
step-size to use. There is also a need to specify
the coupling to external input and output hardware
interfaces. To make such information portable, a
notation in Modelica is needed.

In cases when a Modelica model, for example,
needs to access medium properties from a data base
or be simulated simultaneously with models in other
programs like a discrete event package, a finite
element package or in a network performing dis-
tributed interactive simulation (DIS), certain infor-
mation needs to be exchanged. Such specification
needs to be portable, i.e., language notations are
needed in Modelica. A possibility would be to use
the High Level Architecture, HLA.

There are also cases when the model description
needs to be augmented in order to help the tool
achieve fast enough simulation. An example is to
partition the model and use multi-rate integration,
i.e., to integrate parts of a model with fast dynamics
with shorter step-size. Another example is the ability
to help the tool partition the model for execution on
different processors in a parallel architecture. For
models with changing topology, there might also be
a need to specify which configurations are useful.
A model with 10 switches can be in 1024 different
modes. If the modeler knows that maybe only 20
modes are actually used, more efficient code can be
generated than would be possible for the general
case of 1024 modes.

Experiment Specification

When using a mathematical model for simulation
or optimization, the model itself is only a part of

the problem specification. Parameter values, initial
values, start time, stop time or stop condition and
how to treat the result of the simulations are also
needed. On a more lower level it may be of interest
to specify solvers and their parameters.

The separation of model, integration algorithm
and experiment is common since a long time. How-
ever, what constitute an experiment is not always
obvious. Does a change of a model parameter belong
to an experiment or to a model? Sometimes the en-
vironment of the system under study is described by
some input signals connected to the model. In certain
cases, the “environment” is described as a dynamic
model, i.e., the full power of Modelica is needed. Sim-
ilarly, describing an optimization criterion typically
contain integration that can be converted to a dif-
ferential equation. Even hybrid features might be
needed, for example, to define a maximum of a sig-
nal accurately would involve checking for the sign
shift of the derivative of the signal.

Issues like handling of parameter sets, functions
defined by tables, coupling of inputs, how initializa-
tion should be done, definition of an optimization
problem, etc. needs to be portable between different
tools. This means that Modelica should be extended
in these directions.

User Environment
Modelica already has provisions to describe the
graphical layout of icons and connection topology by
means of annotations. So far, only static pictures
have been considered. When using models for oper-
ator training, typically a live process layout is used
to show the status of the process by means of up-
dated numeric text, changing water level of a tank,
etc. There is also a need to input new parameter
values in specially designed forms. The annotation
attributes could be extended to handle such cases.

Typically, an interactive user interface for mod-
eling and simulation needs extensive capabilities for
general matrix calculations and control design algo-
rithms. It should, of course, be possible to use a Mod-
elica tools with close connections to available pack-
ages like Matlab, Xmath, Matematica, etc. However,
for many users it would be beneficial to use the Mod-
elica syntax, the strong typing property and matrix
expressions in an interactive fashion. Modelica func-
tions could then be used both within a model and be
called interactively.

Predefined external functions would specify the
interfaces of simulators, optimizers, display tools
etc. These interfaces should define parameters and
operations which could be done. Modelica already

6



supports a powerful function concept. However, it
may be useful to introduce language constructs
which supports member functions in the ordinary
object-oriented meaning.

It should be remembered that high quality tools
should have good interactive graphical user inter-
faces with menu selection, dialogue boxes, ability to
record menu commands in script form, etc. A typical
user who wants to solve a problem should not need
to write or read this textual representation.

ORGANIZATION OF MODELICA DESIGN

The Modelica design effort started as an action
within the ESPRIT project "Simulation in Europe
Basic Research Working Group (SiE-WG)" and is
since February 1997 the Technical Committee 1
within Eurosim. The Modelica Design Group has had
11 meetings to work out the Modelica fundamentals.
The plan is to make the Modelica design effort a
Technical Chapter within SCS.

The Modelica Design Group includes simula-
tion tool builders, users from different application
domains, and computer scientists. The present mem-
bers (May 1998) are Manuel Alfonseca, Universi-
dad Autonoma de Madrid, Spain, Bernhard Bach-
mann, ABB Corporate Research, Baden-Dättwil,
Switzerland, Fabrice Boudaud and Alexandre Je-
andel, Gaz de France, Jan Broenink, University of
Twente, The Netherlands, Dag Brück and Hilding
Elmqvist (chairman), Dynasim AB, Lund, Sweden,
Thilo Ernst, GMD-FIRST, Berlin, Germany, Rüdi-
ger Franke, Technical University of Ilmenau, Ger-
many, Peter Fritzson, Linköping University, Sweden,
Kaj Juslin, VTT, Finland, Matthias Klose, Techni-
cal University of Berlin, Germany, Sven Erik Matts-
son, Lund University, Sweden, Pieter Mosterman and
Martin Otter, DLR Oberpfaffenhofen, Germany, Per
Sahlin, BrisData AB, Stockholm, Sweden, André
Schneider and Peter Schwarz, Fraunhofer Institute
for Integrated Circuits, Dresden, Germany, Hubertus
Tummescheit, GMD FIRST, Berlin, Germany, Hans
Vangheluwe, University of Gent, Belgium.

CONCLUSIONS

The Modelica effort has been described and an
overview of Modelica has been given. Version 1.0 of
Modelica was finished in September 1997. There is
ongoing work to develop model libraries and tools.
For more information, including modeling require-
ments, rationale and definition of Modelica and fu-

ture developments, see Modelica (1997).
The paper has also outlined some areas that

needs to be developed. We invite individuals with
expertize to participate in extending Modelica. If you
are interested, please, contact any of the authors.

Acknowledgements
The authors would like to thank the other members
of the Modelica Design Group for inspiring discus-
sions and their contributions to the Modelica design.

REFERENCES

CELLIER, F. and H. ELMQVIST (1993): “Automated formula
manipulation supports object-oriented continuous-
system modeling.” IEEE Control Systems Magazine,
13:2, pp. 28–38.

ELMQVIST, H., D. BRÜCK, and M. OTTER (1996): Dymola
— User’s Manual. Dynasim AB, Research Park Ideon,
Lund, Sweden.

ERNST, T., M. KLOSE, and H. TUMMESCHEIT (1997): “Model-
ica and Smile — A case study applying object-oriented
concepts to multi-facet modeling.” In Proceedings of the
1997 European Simulation Symposium (ESS’97). The
Society for Computer Simulation, Passau, Germany.

MATTSSON, S. E. (1997): “On modeling of heat exchang-
ers in Modelica.” In HAHN AND LEHMANN, Eds., Pro-
ceedings of the 1997 European Simulation Symposium
(ESS’97), pp. 127–133. SCS, The Society for Computer
Simulation, Passau, Germany.

MATTSSON, S. E., M. ANDERSSON, and K. J. ÅSTRÖM

(1993): “Object-oriented modeling and simulation.” In
LINKENS, Ed., CAD for Control Systems, pp. 31–69.
Marcel Dekker, Inc.

MATTSSON, S. E. and G. SÖDERLIND (1993): “Index reduc-
tion in differential-algebraic equations using dummy
derivatives.” SIAM Journal of Scientific and Statisti-
cal Computing, 14:3, pp. 677–692.

MODELICA (1997): A unified object-oriented language
for physical systems modeling. Modelica homepage:
http://www.Dynasim.se/Modelica/.

OTTER, M., C. SCHLEGEL, and H. ELMQVIST (1997): “Mod-
eling and realtime simulation of an automatic gearbox
using Modelica.” In Proceedings of the 1997 European
Simulation Symposium (ESS’97). The Society for Com-
puter Simulation, Passau, Germany.

PANTELIDES, C. (1988): “The consistent initialization of
differential-algebraic systems.” SIAM Journal of Sci-
entific and Statistical Computing, 9, pp. 213–231.

7


