The 12th European Simulation Multiconference, ESM’98, June 16--19, 1998, Manchester, UK

MODELICA — THE NEW OBJECT-ORIENTED MODELING LANGUAGE

Hilding Elmqvist

Dynasim AB
Research Park Ideon
SE-223 70 Lund, Sweden
E-mail: Elmqvist@Dynasim.se

KEYWORDS

Modelica, modeling language, object-orientation, hierar-
chical systems, differential-algebraic equations

ABSTRACT

A standardized language for reuse and exchange of
models is needed. An international design group has
designed such a language called Modelica. Modelica is
a modern language built on non-causal modeling with
mathematical equations and object-oriented constructs
to facilitate reuse of modeling knowledge.

INTRODUCTION

Modeling and simulation are becoming more important
since engineers need to analyse increasingly complex
systems often composed of subcomponents from differ-
ent domains. Typical examples comes from mechatronic
systems within automotive, aerospace and robotics ap-
plications. Such systems are composed of components
from domains like electrical, mechanical, hydraulical,
control, etc. Today’s tools are generally weak in treat-
ing such multi-domain models because the general tools
are block-oriented and thus demand a huge amount of
manual rewriting to get the equations into explicit form.

There is too large a gap between the user’s problem
and the model description that the simulation program
understands. Modeling should be much closer to the
way an engineer builds a real system, first trying
to find standard components like motors, pumps and
valves from manufacturers’ catalogues with appropriate
specifications and interfaces. Only if there does not exist
a particular subsystem, the engineer would actually
construct it.

Reuse is a key issue for handling complexity. There
have been several attempts to define object-oriented lan-
guages for physical modeling. However, the ability to
reuse and exchange models relies on a standardized for-
mat. It was thus important to bring this expertise to-
gether and unify the concepts and notations. A language
design group was thus formed in September 1996 and
one year later the Modelica! language was available.

Modelica is intended for modeling within many ap-
plication domains such as electrical circuits, multi-

IModelica™ is a trade mark of the Modelica Design Group

Sven Erik Mattsson

Department of Automatic Control
Lund Institute of Technology
Box 118, SE-221 00 Lund, Sweden
E-mail: SvenErik@control.LTH.se

Martin Otter

DLR Oberpfaffenhofen
D-82230 Wessling, Germany
E-mail: Martin.Otter@DLR.de

body systems, drive trains, hydraulics, thermodynami-
cal systems, and chemical processes etc. It supports sev-
eral formalisms: ordinary differential equations (ODE),
differential-algebraic equations (DAE), bond graphs, fi-
nite state automata, and Petri nets etc. Modelica is in-
tended to serve as a standard format so that models
arising in different domains can be exchanged between
tools and users.

This paper gives an introduction to Modelica by means
of an example. An overview of the work on supporting
libraries and the plans for further development is given.
Another aim of the paper is to interest individuals to
participate in developing Modelica further.

MODELICA BASICS

As an introduction to Modelica, consider modeling of
a simple motor drive system as defined in Fig. 1. The
system can be broken up into a set of connected compo-
nents: an electrical motor, a gearbox, a load and a con-
trol system. A Modelica model of the motor drive system
is given in Fig. 2. It is a composite model which speci-
fies the topology of the system to be modeled in terms of
components and connections between the components.
The statement “Gearbox gearbox(n=100);” declares a
component gearbox of class Gearbox and sets the de-
fault value of the gear ratio, n, to 100.

Much of the Modelica syntax is normally hidden from
the end-user. Models of standard components are typ-
ically available in model libraries. Using a graphical
model editor, a model can be defined by drawing a model
diagram as shown in Fig. 1, by positioning icons that
represent the models of the components, drawing con-
nections and giving parameter values in dialogue boxes.
Constructs for including graphical annotations in Mod-
elica make icons and model diagrams portable.

A component model may be a composite model to
support hierarchical modeling. The object diagram of
the model class Motor is shown in Fig. 3.

controller L _
ol =
i | Es=T
T n=100 TNI

Figure 1 Schematic picture of a motor drive.

model MotorDrive

Motor motor;
PI controller;
Gearbox gearbox(n=100);
Shaft J1(J=10);
Tachometer wl;

equation

connect (controller.out, motor.in);

connect (motor.flange , gearbox.a);

connect (gearbox.b , Jl.a);

connect (J1.b , wl.a);

connect (wl.w , controller.in);
end MotorDrive;

Figure 2 A Modelica model of the system in Fig. 1.

Variables

Physical modeling deals with specifying relations be-
tween physical quantities. For the drive system, quan-
tities such as angle and torque are of interest. Their
types are declared in Modelica as
type Angle = Real(quantity = "Angle",

unit = "rad",

displayUnit = "deg");
type Torque = Real(quantity = "Torque",

unit = "N.m");

where Real is a predefined type, which has a set of
attributes such as name of quantity, unit of measure,
default display unit for input and output, minimum
value, maximum value and initial value.

Connectors and Connections

Connections specify interactions between components.
A connector should contain all quantities needed to
describe the interaction. Voltage and current are needed
for electrical components. Angle and torque are needed
for drive train elements.

connector Pin connector Flange
Voltage v; Angle r;
flow Current ij; flow Torque t;
end Pin; end Flange;

A connection, connect (Pinl, Pin2), with Pinl and
Pin2 of connector class Pin, connects the two pins such
that they form one node. This implies two equations,
namely Pinl.v = Pin2.v and Pinl.i + Pin2.i = 0.
The first equation indicates that the voltages on both
branches connected together are the same, and the

Figure 3 A motor model.

second corresponds to Kirchhoff’s current law saying
that the current sums to zero at a node. Similar laws
apply to flow rates in a piping network and to forces
and torques in a mechanical system. The sum-to-zero
equations are generated when the prefix flow is used
in the connector declarations.

Partial models and inheritance

A very important feature in order to build reusable
descriptions is to define and reuse partial models. A
common property of many electrical components is that
they have two pins. This means that it is useful to define
an interface model class TwoPin, that has two pins, p
and n, and a quantity, v, that defines the voltage drop
across the component.

partial model TwoPin
Pin p, n;
Voltage v;
equation
V = p.Vv - n.V;
end TwoPin;

p.i + n.i = 0;

The equations define common relations between quanti-
ties of a simple electrical component. The keyword par-
tial indicates that the model class is incomplete. To be
useful, a constitutive equation must be added. To define
a model for a resistor, start from TwoPin and add a pa-
rameter for the resistance and Ohm’s law to define the
behavior.

model Resistor "Ideal resistor"

extends TwoPin;
parameter Resistance R;
equation

R¥p.1i = v;

end Resistor;

A string between the name of a class and its body is
treated as a comment attribute. Tools may display this
documentation in special ways. The keyword param-
eter specifies that the quantity is constant during a
simulation experiment, but can change values between
experiments.

For the mechanical parts, it is also useful to define a
shell model with two flange connectors,

partial model
Flange a, b;
end TwoFlange;

TwoFlange

A model of a rotating inertia is given by

model Shaft

extends TwoFlange;
parameter Inertia J = 1;
AngularVelocity w;
equation
a.r = b.r;
der(a.r) = w;
J*der(w) = a.t + b.t;
end Shaft;

where der (w) means the time derivative of w.

THE IDEAS BEHIND MODELICA

Among the recent research results in modeling and
simulation the two concepts object-oriented and non-
causal modeling have had a strong impact on the Mod-
elica design. A new attempt at introducing interop-
erability and openness to the world of modeling and
simulation systems is justified by the combined power
of the two concepts together with proven technology
from existing modeling languages such as ASCEND
[Piela et al. (1991)], Dymola [Elmqvist et al (1996)],
gPROMS [Barton and Pantelides (1994)], NMF [Sahlin
et al. (1996)], ObjectMath [Fritzson et al (1995)],
Omola [Mattsson et al. (1993)], SIDOPS+ [Breunese
and Broenink (1997), Smile [Kloas et al. (1995)], U.L.M.
[Jeandel et al. (1996)] and VHDL-AMS [IEEE (1997)].

Non-Causal Modeling

In Modelica it is possible to write balance and other
equations in their natural forms as a system of
differential-algebraic equations (DAE). Modelica has
been carefully designed in such a way that computer
algebra can be utilized to achieve as efficient simula-
tion code as if the model would be converted to ODE
form manually. For example, define a gearbox model as

model Gearbox "Ideal gearbox without inertia'
extends TwoFlange;
parameter Real n;
equation
a.r n*b.r;
n¥a.t b.t;
end Gearbox;

without bothering about what are inputs from a compu-
tational point of view and use it as a component model,
when modeling the drive system in Fig. 1.

Note, that this use actually leads to a non-trivial sim-
ulation problem. The ideal gearbox is rigidly connected
to a rotating inertia on each side. It means the model
includes two rigidly connected inertias, since there is no
flexibility in the ideal gearbox. The angular position as
well as the velocity of the two inertias should be equal.
All of these four differentiated variables cannot be state
variables with their own independent initial values.

A DAE problem, which includes constraints between dif-
ferentiated variables is sometimes called a “high index
DAE”. When converting it to ODE form, it is necessary
to differentiate some equations and the set of state vari-
ables can be selected smaller than the set of differenti-
ated variables. There is an efficient algorithm by Pan-
telides (1988) for the determination of what equations
to differentiate. In the drive example, the position con-
straint needs to be differentiated twice to calculate the
reaction torque in the coupling, and it is sufficient to
select the angle and velocity of either inertia as state
variables. The constraint leads to a linear system of si-
multaneous equations involving angular accelerations
and torques. A symbolic solution will contain a determi-
nant of the form “J,+J,,n%”. The tool thus automatically
deduces how inertia is transformed through a gearbox.

ADVANCED MODELING FEATURES

The modeling power of Modelica is large. Modeling of,
for example, multi-body systems and control systems
is done conveniently by utilizing matrix equations. It is
also possible to have arrays of components and to define
regular connection patterns. Reuse of model library
components is further supported by allowing model
class parameters.

Modelica supports hybrid modeling. Realistic physical
models often contain discontinuities, discrete events or
changes of structure. Examples are relays, switches,
friction, impact, sampled data systems etc. Algorithms
and functions are supported in Modelica for modeling
parts of a system in procedural programming style.

STANDARD LIBRARIES

In order that Modelica is useful for model exchange, it
is important that libraries of the most commonly used
components are available, ready to use, and sharable
between applications. For this reason, an extensive
Modelica base library is under development which
will become an intrinsic part of Modelica. It includes
mathematical functions (sin, In, etc.), type definitions
(e.g., Angle, Voltage), interface definitions (e.g., Pin,
Flange) and component libraries for various domains.

Predefined quantity types and connectors are useful for
standardization of the interfaces between components
and achieve model compatibility without having to
resort to explicit coordination of modeling activities.

Component libraries are mainly derived from already
existing model libraries from various object-oriented
modeling systems. They are realized by specialists in
the respective area, taking advantage of the new fea-
tures of Modelica not available in the original modeling
system. Libraries of the following areas are under de-
velopment: input/output blocks, electric and electronic
components (SPICE3 elements), electric power systems,
drive trains and gear boxes, 3D-mechanical systems
(multi-body systems), hydraulic systems, 1D thermo-
fluid flow (based on the finite volume method), aircraft
flight system dynamics components, bond graphs, finite
state machines and Petri nets.

DIRECTIONS OF FUTURE DEVELOPMENT

The Modelica design effort started in the continuous
time domain since there is a common mathematical
framework in the form of differential-algebraic equa-
tions (DAE) and there are several existing modeling
languages based on similar ideas. There is also signifi-
cant experience of using these languages in various ap-
plications. It thus seemed to be appropriate to collect
all knowledge and experience and design a new unified
modeling language or neutral format for model repre-
sentation. The short-range goal was to design a model-
ing language for differential-algebraic equation systems
with some discrete event features to handle discontinu-

ities and sampled systems. The design should be ex-
tendible in order that the goal can be expanded to de-
sign a multi-formalism, multi-domain, general-purpose
modeling language.

There is a need to consider extensions of Modelica for
handling of partial differential equations, discrete event
models, etc. Some of these areas are discussed below.

Partial Differential Equations

The underlying laws of a model of a technical system are
often of the form of partial differential equations (PDE).
The DAE form is then an approximation where certain
quantities are considered independent of the spatial co-
ordinates within a certain object. For certain phenom-
ena like heat conduction, convection, laminar and turbu-
lent flows, and vibrations in flexible mechanical struc-
tures, more accurate PDE models might be needed to
capture the detailed behavior.

A PDE model is defined by (1) a partial differential
equation, (2) the domain of validity of the PDE and
(3) boundary conditions for spatial borders and initial
conditions. The domain of validity is typically a geomet-
rical domain in 1-3 dimensions. A variety of geometry
formats are used by different CAD software. To support
exchange it is necessary to have an application indepen-
dent format for representing geometry in Modelica.

Discrete Event Models

Further model approximations are done when quanti-
ties are considered to be constant over intervals of time,
i.e., when dealing with discrete event models. Modelica
already have features for handling discrete variables
and describe how they are changed. However, many is-
sues of standard discrete event packages have not been
considered yet, such as: function library for various ran-
dom distributions, queue handling, how to gather sta-
tistical information, processes and their interaction, an-
imation features, etc. It would be possible to extend
Modelica with such features. However, there are also
many different formalisms for discrete event modeling,
such as: process oriented, activity oriented, Petri nets,
Grafcet, DEVS, State charts and VHDL (discrete circuit
modeling). There are also many discrete event programs
available. In certain cases, modeling is done in a stan-
dard programming language like C++ or Java with the
use of a library of standard functions. Probably, Mod-
elica should be both extended with basic discrete event
features, as well as having appropriate interfaces de-
fined for coupling to external discrete event packages.

Simulator Environment

Most issues about simulating a Modelica model is
an internal matter for the simulator. However, for
hardware-in-the-loop simulation one typically needs to
specify which fixed step-size algorithm and what step-
size to use. There is also a need to specify the coupling
to external input and output hardware. To make such
information portable, a notation in Modelica is needed.

In cases when a Modelica model, for example, needs to
access medium properties from a data base or be sim-
ulated simultaneously with models in other programs
like a discrete event package, a finite element package
or in a network performing distributed interactive simu-
lation (DIS), certain information needs to be exchanged.
Such specification needs to be portable, i.e., language
notations are needed in Modelica. A possibility would
be to use the High Level Architecture, HLA.

There are also cases when the model description needs
to be augmented in order to help the tool achieve
fast enough simulation. An example is to partition the
model and use multi-rate integration, i.e., to integrate
parts of a model with fast dynamics with shorter step-
size. Another example is the ability to help the tool
partition the model for execution on different processors
in a parallel architecture. For models with changing
topology, there might also be a need to specify which
configurations are useful. A model with 10 switches can
be in 1024 different modes. If the modeler knows that
maybe only 20 modes are actually used, more efficient
code can be generated than would be possible for the
general case of 1024 modes.

Experiment Specification

When using a mathematical model for simulation or
optimization, the model itself is only a part of the
problem specification. Parameter values, initial values,
start time, stop time or stop condition and how to treat
the result of the simulations are also needed. On a more
lower level it may be of interest to specify solvers and
their parameters.

The separation of model, integration algorithm and ex-
periment is common since a long time. However, what
constitute an experiment is not always obvious. Does a
change of a model parameter belong to an experiment
or to a model? Sometimes the environment of the sys-
tem under study is described by some input signals con-
nected to the model. In certain cases, the “environment”
is described as a dynamic model, i.e., the full power of
Modelica is needed. Similarly, describing an optimiza-
tion criterion typically contain integration that can be
converted to a differential equation. Even hybrid fea-
tures might be needed, for example, to define a maxi-
mum of a signal accurately would involve checking for
the sign shift of the derivative of the signal.

Issues like handling of parameter sets, functions defined
by tables, coupling of inputs, how initialization should
be done, definition of an optimization problem, etc.
needs to be portable between different tools. This means
that Modelica should be extended in these directions.

User Environment

Modelica already has provisions to describe the graphi-
cal layout of icons and connection topology by means of
annotations. So far, only static pictures have been con-
sidered. When using models for operator training, typi-
cally a live process layout is used to show the status of

the process by means of updated numeric text, changing
water level of a tank, etc. There is also a need to input
new parameter values in specially designed forms. The
annotation attributes could be extended to handle this.

Typically, an interactive user interface for modeling
and simulation needs extensive capabilities for general
matrix calculations and control design algorithms. It
should, of course, be possible to use a Modelica tools
with close connections to available packages like Mat-
lab, Xmath, Matematica, etc. However, for many users
it would be beneficial to use the Modelica syntax, the
strong typing property and matrix expressions in an in-
teractive fashion. Modelica functions could then be used
both within a model and be called interactively.

Predefined external functions would specify the in-
terfaces of simulators, optimizers, display tools etc.
These interfaces should define parameters and opera-
tions which could be done. Modelica already supports a
powerful function concept. However, it may be useful to
introduce language constructs which supports member
functions in the ordinary object-oriented meaning.

It should be remembered that high quality tools should
have good interactive graphical user interfaces with
menu selection, dialogue boxes, ability to record menu
commands in script form, etc. A typical user who wants
to solve a problem should not need to write or read this
textual representation.

ORGANIZATION OF MODELICA DESIGN

The Modelica design effort started as an action in the
ESPRIT project "Simulation in Europe Basic Research
Working Group (SiE-WG)" and is since February 1997
the Technical Committee 1 within Eurosim. The Model-
ica Design Group has had 11 meetings to work out the
Modelica fundamentals. The plan is to make the Mod-
elica design effort a Technical Chapter within SCS.

The Modelica Design Group includes simulation
tool builders, users from different application domains,
and computer scientists. The present members (May
1998) are Manuel Alfonseca, Universidad Autonoma
de Madrid, Spain, Bernhard Bachmann, ABB Cor-
porate Research, Baden-Dattwil, Switzerland, Fabrice
Boudaud and Alexandre Jeandel, Gaz de France, Jan
Broenink, University of Twente, The Netherlands, Dag
Briick and Hilding Elmquist (chairman), Dynasim AB,
Lund, Sweden, Thilo Ernst, GMD-FIRST, Berlin, Ger-
many, Riidiger Franke, Technical University of [lmenau,
Germany, Peter Fritzson, Linkoping University, Swe-
den, Kaj Juslin, VI'T, Finland, Matthias Klose, Techni-
cal University of Berlin, Germany, Sven Erik Mattsson,
Lund University, Sweden, Pieter Mosterman and Mar-
tin Otter, DLR Oberpfaffenhofen, Germany, Per Sahlin,
BrisData AB, Stockholm, Sweden, André Schneider and
Peter Schwarz, Fraunhofer Institute for Integrated Cir-
cuits, Dresden, Germany, Hubertus Tummescheit, GMD
FIRST, Berlin, Germany, Hans Vangheluwe, University
of Gent, Belgium.

CONCLUSIONS

The Modelica effort has been described and an overview
of Modelica has been given. Version 1.0 of Modelica was
finished in September 1997. There is ongoing work to
develop model libraries and tools. For more informa-
tion, including rationale and definition of Modelica and
future developments, see www at Modelica (1998).

The paper has also outlined some areas that needs to
be developed. We invite individuals with expertize to
participate in extending Modelica. If you are interested,
please, contact any of the authors.

Acknowledgements

The authors would like to thank the other members of
the Modelica Design Group for inspiring discussions and
their contributions to the Modelica design.

REFERENCES

BARTON, P. and C. PANTELIDES (1994): “Modeling of combined
discrete/continuous processes.” AIChE J., 40, pp. 966-979.

BREUNESE, A. P. and J. F. BROENINK (1997): “Modeling mecha-
tronic systems using the SIDOPS+ language.” In Pro-
ceedings of ICBGM’97, 3rd International Conference on
Bond Graph Modeling and Simulation, Simulation Series,
Vol.29, No.1, pp. 301-306. The Society for Computer Sim-
ulation International.

EvLmqvistT, H., D. BRUCK, and M. OTTER (1996): Dymola —
User’s Manual. Dynasim AB, Research Park Ideon, Lund,
Sweden.

FRITZSON, P, L. VIKLUND, D. FRITZSON, and J. HERBER (1995):
“High-level mathematical modeling and programming.”
IEEFE Software, 12:3.

IEEE (1997): “Standard VHDL Analog and Mixed-Signal
Extensions.” Technical Report IEEE 1076.1. IEEE.

JEANDEL, A., F. BOUDAUD, P. RAVIER, and A. BUHSING (1996):
“U.L.M: Un Langage de Modélisation, a modelling lan-
guage.” In Proceedings of the CESA’96 IMACS Multicon-
ference. IMACS, Lille, France.

KroAs, M., V. FRIESEN, and M. SIMONS (1995): “Smile — A sim-
ulation environment for energy systems.” In Sypow, Ed.,
Proceedings of the 5th International IMACS-Symposium
on Systems Analysis and Simulation (SAS’95), vol. 18-19
of Systems Analysis Modelling Simulation, pp. 503-506.
Gordon and Breach Publishers.

MATTSSON, S. E., M. ANDERSSON, and K. J. ASTROM (1993):
“Object-oriented modelling and simulation.” In LINKENS,
Ed., CAD for Control Systems, chapter 2, pp. 31-69.
Marcel Dekker Inc, New York.

MoDELICA (1998): A unified object-oriented language
for physical systems modeling. Modelica homepage:
http://www.Dynasim.se/Modelica /.

PANTELIDES, C. (1988): “The consistent initialization of
differential-algebraic systems.” SIAM Journal of Scien-
tific and Statistical Computing, 9, pp. 213-231.

PieLA, P, T. EPPERLY, K. WESTERBERG, and A. WESTERBERG
(1991): “ASCEND: An object-oriented computer environ-
ment for modeling and analysis: the modeling language.”
Computers and Chemical Engineering, 15:1, pp. 53-72.

SAHLIN, P, A. BRING, and E.F.SOWELL (1996): “The Neutral
Model Format for building simulation, Version 3.02.”
Technical Report. Department of Building Sciences, The
Royal Institute of Technology, Stockholm, Sweden.

