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ABSTRACT

To speed up the development cycle of electronically con-

trolled mechanical devices, hardware-in-the-loop simula-

tion is used more and more. Applying this method to

an automatic gearbox of a car, the electronic transmis-

sion control hardware is tested against a model of the

gearbox, which is simulated in realtime. Modeling such a

system is a demanding task, because its structure varies

during gearshift. Since the gearbox investigated has six

switching elements (clutches and freewheels) the actual

structure has to be found amongst 26 = 64 possible con-

�gurations. It is shown how such a variable structure sys-

tem can be modeled with Modelica and how a consistent

con�guration can be found in realtime after a gearshift

occured. The results presented show that it is possible

to simulate variable structure systems in realtime using

standard realtime simulation hardware and appropriate

software tools.

INTRODUCTION

Comfort standards regarding to gearshift of automatic

gearboxes of vehicles increase permanently. Gearshift

comfort is mainly inuenced by control of the switching

elements of a gearbox: Clutches and freewheels. Control

is performed mostly by an electronic control unit (ECU).

Fine tuning of the ECU and the switching elements is

therefore essential to optimize gearshift comfort.

In order to speed up the development cycle, hardware-

in-the-loop (HIL) simulation is used more and more. For

the problem treated, such a setup consists of the ECU-

hardware and a realtime simulation of all other compo-

nents interacting dynamically with it: The whole drive

train of engine, hydrodynamic torque converter, gearbox,

di�erential gearbox and longitudinal dynamics of the ve-

hicle.

Modeling such a system is di�cult since the structure of

the system varies during each gearshift: Depending on the

actual control, di�erent wheels and freewheels are engaged

or disengaged. The integrator has to be stopped and the

new structure has to be determined in accordance to the

actual forces imposed on the gearwheels by the switching

elements. In the example treated, the automatic gear-

box has 6 switching elements leading to 26 = 64 possible

con�gurations of the system.

It is shown how such a variable structure system can be

modeled with Modelica (Modelica 1997), a novel uni�ed

object-oriented language for physical systems modeling.

The Modelica-translator of the simulation environment

Dymola (Elmqvist et al. 1996), together with Dymola's

symbolic engine, is used to generate e�cient code suited

for realtime simulation which e.g. requires a state space

form of the model. A new technique, which meets the real-

time requirements like �xed sampling time, is used to �nd

a consistent con�guration after a gearshift. Therefore a

hardware-in-the-loop (HIL) simulation of automatic gear-

boxes becomes possible. The e�ciency of the generated

code and the sampling frequency necessary to reproduce

o�ine simulation results enables the usage of digital signal

processors.

MODEL OF AUTOMATIC GEARBOX

Figure 1 shows an outlined sketch of a typical 4 speed

automatic gearbox which is investigated in this pa-

per. It consists of a hydrodynamic torque converter, a

standard planetary wheelset, a Ravigneaux wheelset, 6

clutches/brakes, and 2 freewheels (F�orster 1991).

Gearshift dynamics can only be simulated if the input-

and output-torques of the gearbox represent a real-life

vehicle maneuver. Therefore, at least the engine and the

longitudinal dynamics of the vehicle has to be modeled. A

Modelica model of such a system is given in �gure 2 as a

composition or object diagram (Otter and Elmqvist 1997)

using Dymola's object diagram editor. Every icon in the

composition diagram is an instance of a Modelica class

and represents a component of the drive train. Mechan-

ical anges of the components are modelled by Modelica

connector classes and are characterized by small square
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Figure 1: Structure of a typical automatic gearbox.
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Figure 2: Composition diagram of vehicle drive train.
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Figure 3: Composition diagram of automatic gear box \AutoGear".
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boxes in the icons. A line between two connectors de-

�nes a rigid, mechanical coupling between the respective

components. Dashed lines respresent directed signal ow

connections.

The driving part of the system in �gure 2 consists of the

engine, the torque converter and appropriate inertias. En-

gine and converter are modeled by tables. The driven part

incorporates the automatic gearbox, the mass of the car,

and aerodynamic forces. Component \ControlBox" repre-

sents the ECU which generates the gearshift signals. For

o�ine tests of the simulation model simple ramp func-

tions are used. During HIL simulations these signals are

generated by the (hardware) ECU and fed to the simu-

lation processor via appropriate interfaces like digital IO

and CAN bus.

In �gure 3 the Modelica model of the automatic gearbox

(component \AutoGear") is shown. It is set up by a stan-

dard planetary wheelset and a Ravigneaux set, by shafts

to model wheel inertias, by clutches and by combined

clutch/freewheel elements (= one-way clutches). The

dashed lines represent the signals of the ECU which are

proportional to the desired pressure forces of the clutches.

Component \Ravigneaux" is an instance of the Modelica

class shown in �gure 4 which builds up the Ravigneaux

set by basic kinematic wheel elements.

sun1=R sun2=R

planet1=Rp1

ring=R
planet2A=Rp3planet2=Rp2

cut pDrive1

cut pDrive2

cut nDrive1

cut nDrive2

Figure 4: Composition diagram of Ravigneaux set.

MODELICA MODELS OF BASIC

CONTINUOUS COMPONENTS

In the previous section the vehicle drive train model was

built up by the connection of basic components, such as

shafts and clutches, using composition diagrams. The

most important continuous base components are now dis-

cussed in more detail, based on ideas of (Otter 1994): All

drive train components have mechanical anges which are

used to connect components rigidly together and which

are de�ned by the following Modelica connector class (a

connector class is a class usable in connections):

connector DriveCut

AngularV elocity w "velocity of cut";

AngularAcceleration a "acceleration of cut";

ow Torque t "cut-torque";

end DriveCut;

Connector class DriveCut de�nes the three variables \w,

a, t" using basic type classes de�ned in the Modelica stan-

dard library (type classes are classes which do not have

equations):

type AngularV elocity = Real(Unit ="1/s");

type AngularAcceleration = Real(Unit ="1/s.s");

type Torque = Real(Unit ="N.m");

That is, all the three variables are real variables with a

de�ned unit. The Torque type has the pre�x ow in the

connector de�nition, meaning that the sum of all torques

at a connection point is zero. In other words, Torques are

through variables. Some typical components using this

connector class are shown in table 1.

Model class ShaftS describes a shaft with inertia and two

mechanical anges p and n. The �rst two equations con-

tain the relationship between the kinematic variables of

the two anges. The third equation de�nes that the an-

gular acceleration is the derivative of the angular velocity

and the last equation �nally states Newtons law. Model

class Gear is an ideal gearbox without inertia and �nally

model class DriveSpringS is a rotational spring where the

spring torque is used as state variable.

MODELICA MODEL OF CLUTCHES

Clutches and freewheels lead to variable structure systems

because two shafts can stick or slip relative to each other.

The number of states is changing during a transition from

stick to slip and vice versa. This complicates the model-

ing because a clutch would need the possibility to remove

states from the shaft, which is a component connected to

the clutch, i.e., a clutch can no longer be described by a

local model. It is common practice to use the additional

constraint equation that the relative angular acceleration

vanishes while the clutch is stuck. Since the relative an-

gular velocity is zero when reaching the stuck state, it

remains zero due to this constraint equation. The graphi-

cal representation of a clutch within Dymola, is shown in

�gure 5.

cut p cut n
p.t

p.w

n.t

n.w

u

Figure 5: Composition diagram of clutch.

The Modelica model of this clutch is de�ned as:

model Clutch

DriveCut p; n;

Real u "control input u = 0..1";

protected

AngularV elocity wrel "relative speed";

Torque tc "constraint torque, if stuck";

Boolean locked "true if stuck";
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Graphical Representation Modelica description

cut p cut n
p.t

p.w

n.t

n.w

model ShaftS

parameter Inertia J "shaft inertia";

DriveCut p; n;

equation

p:w + n:w = 0;

p:a+ n:a = 0;

der(p:w) = p:a;

J � p:a = p:t� n:t;

end ShaftS;

cut p cut n
p.t

p.w

n.t

n.w

model Gear

parameter Real ratio "gear ratio";

DriveCut p; n;

equation

p:w + ratio � n:w = 0;

p:a+ ratio � n:a = 0;

ratio � p:t = n:t;

end Gear;

cut p cut n
p.t

p.w

n.t

n.w

model DriveSpringS

parameter Real c "spring constant";

DriveCut p; n;

equation

der(p:t) = c � (p:w+ n:w);

p:t = n:t;

end DriveSpringS;

Table 1: Components of Dymola's drive train library.

equation

wrel = p:w + n:w;

0 = if locked then p:a+ n:a else tc;

�p:t = if locked then tc else ta(wrel; u);

p:t = n:t;

...

end Clutch;

The clutch is controlled by the input signal u. For u =

0 the clutch is open, for u = 1 the maximum pressure

force is applied. The �rst equation determines the relative

angular velocity between the elements connected by the

clutch component. The second equation is essential: it

states that in the stuck mode (locked = true) the relative

acceleration and in the sliding mode the constraint torque

(= tc) vanishes, respectively. This is an equation with

variable causality and it is not possible to solve for one

of the two if-branches. It turns out that such equations

are always part of an algebraic loop, i.e., the unknown

variables in this equation are determined by the solution

of a system of a algebraic equations. The third equation is

used to compute the cut-torque in the mechanical ange

p: In stuck mode, the cut-torque is equal to the contrainst

torque tc. In sliding mode, the cut-torque is an applied

torque and is calculated as function of the relative angular

velocity and of the input signal. The model class for a

freewheel is nearly identical to that of a clutch. The only

di�erence is that for a freewheel there is no applied torque

ta during the slip phase.

Having set up the equations for stick and slip it remains

to be de�ned how to switch between these con�gurations,

i.e., how the Boolean variable locked is set. This is done

using a library for �nite automata and petri nets (the

details of this library are outside the scope of this paper).

The �nite automaton of a freewheel is given in �gure 6.
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Figure 6: Switching structure of a freewheel.

It consists of the 3 discrete states stuck, forward and start-

Forward representing stick, slip and start of slip. These

states are instances of class place which has one connector

with the Boolean variable state. Only one place object is

active at a time, meaning that the corresponding Boolean
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Figure 7: Switching structure of a clutch.

variable is true. The transitions between the states are

described by objects of class transition (e.g. toStuck1,

toStartForward). The conditions which �re a transition

are de�ned at the transition objects (e.g. wrel � 0). Fir-

ing a transition means that the active state variable is set

to false, and the state of the object connected at the other

side of the transition component is set to true.

During integration, the state of the �nite automaton does

not change. If a switching condition becomes true the

exact time of that event is determined by an iterative

procedure (root�nding) and the integration is stopped.

The state of the automaton is changed and the whole

model is evaluated based on the value of the new active

state. As a result, another transition condition may be-

come true. Therefore, the model is evaluated (and the

�nite automaton switched) until no transition condition

is true anymore. Finally the integration is restarted. In

order to connect the �nite automaton of �gure 6 to the

dynamic model of the freewheel, just an equation of the

form \locked = stuck.state" has to be added in the class

of the freewheel, i.e., whenever the stuck state becomes

active, the Boolean variable locked is true. In all other

cases it is false.

Mathematically, the whole procedure can be seen as a �x-

point iteration scheme to �nd a consistent con�guration

for the restart after an event. Alternatively, a consis-

tent con�guration could be determined by transforming

the equations into a linear complementary problem (LCP)

and by solving the LCP-equations. This approach is de-

scribed in detail in (Pfei�er and Glocker 1996). The LCP-

formulation has the disadvantage that it is less suited for

realtime applications since it is not possible to have just

one function evaluation at every sample interval. In the

next section it is discussed how the �x-point iteration

scheme can be modi�ed to ful�ll this need.

The �nite automaton of the freewheel in �gure 6 is simple:

The automaton switches from forward to stuck when the

relative speed wrel becomes zero or less than zero. When

the constraint torque tc becomes greater than zero, slid-

ing occurs again. It is not possible to switch at once from

stuck to forward because the relative speed is zero at the

switching time and the automaton would switch back to

stuck at once since the transition condition of toStuck1 is

ful�lled. Therefore, it is only switched to the intermedi-

ate state startForward. The switching to forward takes

place when the relative speed becomes greater than zero

(or more precise: greater than an epsilon-bound de�ned

in the simulator). When several freewheels or clutches

switch at the same time, it is also possible that the rela-

tive acceleration becomes less than zero in the startFor-

ward state. In such a case the automaton switches back

into the stuck state.
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Figure 8: Simulation results of o�ine simulation.

The �nite automaton for a clutch is more complicated

because both forward and backward sliding can occur,

see �gure 7. Whenever, the normal force fn of the clutch

vanishes, the clutch becomes in-active and the automaton

switches in the startPlace state, independent of the pre-

vious state of the automaton. This starting state is only

left, when the clutch becomes again active, i.e., when the

normal force becomes positive.

REALTIME SIMULATION OF

AUTOMATIC GEARBOX

The Modelica translator of the Dymola modelling and

simulation environment takes the described Modelica

model of the vehicle drive train and the automatic gear-

box as an input, generates a di�erential-algebraic equa-

tion system (DAE) and transforms the DAE to state space

form by symbolic manipulation and graph theoretical al-

gorithms. Algorithmic details are described in (Elmqvist

1978, Du� et al. 1986). The original sorted equations

contain a linear system of 66 equations, due to the shafts

connected via rigid gearboxes and due to the clutch equa-

tions. Via tearing (Elmqvist and Otter 1994, Otter 1994)

this system of equations is reduced to 10 linear equations

which are solved by standard numerical procedures when-

ever the model is evaluated, i.e., the generated code is

mixed symobolic/numeric. The �nal equations are stored

as C-Code which is compiled and linked to the Dymola

simulator for o�ine simulation. For realtime simulation

Matlab CMEX code can be generated, used in Mathworks

Realtime Workshop and downloaded to dSPACE hard-

ware using Realtime Interface.

In �gure 8 some simulation results for a drive shift through

all 4 gears at full engine load are shown, using LSODAR, a

variable step size, variable order integrator with root�nder

(Hindmarsh 1983). There are strong peaks in the accel-

eration because the engine speed is not reduced during

gearshift and the simple ramp functions used are not well

suited for clutch control. In HIL simulations a well tuned

ECU provides better signals resulting in better gearshift

comfort and less stress of the drive train components. The

constraint torque of the combined clutch/freewheel ele-

ment C3 shows that the freewheel is locked in the �rst

gear (negative constraint torque) and that it is free in the

second gear. The clutch is engaged in the third and forth

gear.

During o�ine simulations iterations occur in two situa-

tions: First, for event detection (e.g. zero crossing of the

relative velocity in a clutch) the event instant is deter-

mined by an iterative root �nding algorithm. Second, for

the event restart a new consistent con�guration is found

by the discussed �x-point iteration scheme. In realtime

simulations �xed step integrators have to be used to en-

able IO synchronization. Iterations are carried out at

�xed time instants and every iteration requires one model

evaluation. This is unsuited for realtime simulation since

a maximum number niter of iterations has to be estimated

(say 5-10 iterations) and the sample time has to be big
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Figure 9: Comparision LSODAR/Euler with standard/time-propagated event iteration.

enough for niter model evaluations.

Therefore, a new simple technique was developed to over-

come this di�culty: Conditions for state events are tested

only at the sampling times of the realtime simulation.

This is justi�ed for realtime simulation, since the inte-

gration step size has to be small compared with model

dynamics to avoid numerical oscillations. The essential

new idea is to process only one state transition of a �nite

automaton at an event instant. If this is not yet a con-

sistent model con�guration, an event will occur after the

next integrator step and one other state transition will

take place. In other words, the iterations are propagated

in time throughout the next steps. This kind of iteration

is driven by representations of physical torques and forces

and therefore only a few iterations are to be expected. For

the automatic gearbox simulation it turns out that usually

only 3-4 iterations are needed. This introduces only ne-

glegable additional errors when these iterations are prop-

agated in time as can be seen from �gure 9 where a typical

simulation result around one event instant is shown. In

the left part of this �gure an o�ine simulation with ap-

proximate root �nding and usual event iteration is shown,

whereas in the right part of the �gure the event iteration

is replaced by the discussed scheme.

For the evaluation of one Euler step we measured 4.7 ms

on a Texas Instruments C40 DSP with 50 MHz and 0.65

ms on a DEC alpha processor with 300 MHz (both PC

plugin cards by dSPACE). A typical gearbox ECU sam-

pling time is 10 ms. This o�ers enough margin for model

re�nement and I/O using todays typical HIL simulation

processors.

OUTLOOK

It is comparatively easy to �nd clutch control functions

in terms of forces which ful�ll the requirements regarding

to gearshift comfort. Since the hydraulic clutch actuators

used in typical automatic gearboxes introduce additional

dynamics, it is more di�cult to implement these clutch

control functions. Therefore the hydraulic control of the

clutches of the gearbox has also to be modeled to set up a

complete HIL simulator which is useful for ECU tuning.

That can be done using Modelicas hydraulic library which

is under development. Finally, simulation results have to

be compared with in-vehicle measurements to validate the

models used.
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