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ABSTRACT
A new modeling language, called Modelica, for physical
systems modeling is being developed in an international effort.
The main objective is to make it easy to exchange models and
model libraries. The design of Modelica builds on non-causal
modeling and the use of object-oriented constructs stemming
from modern software development, (hierarchy, encapsulation)
to facilitate reuse of models and model parts.

Mapping bond graph models to Modelica code is in principle a
straightforward process, especially since the Modelica
specifications of the basic bond-graph elements are available,
and Modelica accepts non-causal models.

In this paper, we will discuss an export filter from 20-SIM to
Modelica. We use an application example to show results.

It turned out that Modelica is not the perfect exchange language
for bond–graph models, but since Modelica is still under
development, it might be better in the future.

1 INTRODUCTION
Modelica™  (Modelica 1997) is a new modeling language for
describing the dynamic behavior of physical systems. It is
inspired on the principle of object-oriented software
development and acausal modeling, thus bond–graph like ports
can be used as interface elements, and the equations need not be
specified in a specific computational form. The main objective is
to make it easy to exchange models and model libraries. Since
Modelica accepts non-causal models, bond-graphs can be
translated to Modelica code as submodels (i.e. a-causally).

Bond Graphs are a domain-independent graphical notion of
physical systems modeling. During modeling, the edges in the
graph denote the ideal exchange of energy between the
submodels (vertices). One can state that bond-graph modeling is
in fact a form of object-oriented physical systems modeling.

In this paper, besides a further elaboration on the differences in
modeling paradigm between bond graphs and Modelica, we will
discuss the bond–graph library in Modelica and an export filter
from 20-SIM (Broenink 1997) to Modelica. This export filter is
actually a translator from SIDOPS (the modeling language used
in 20-SIM, suitable for bond graphs, block diagrams and
equations) to Modelica.

An application example will also be discussed to show the
applicability for the end user.

2 MODELICA
Modelica is a new modeling language for physical systems
modeling that is being developed in an international effort

(Modelica 1997). The main objective is to make it easy to
exchange models and model libraries.

The design of Modelica builds on two relevant modern concepts
in modeling and simulation, namely non–causal modeling and
the use of object-oriented constructs (encapsulation, inheritance
and hierarchy) originally used in software engineering (e.g.
Rumbaugh et al. 1991) essential for physical systems modeling.
Through these two concepts, reuse of models and submodels is
facilitated:

• Non-causal modeling allows the internals of submodels
completely be encapsulated. The submodel interfaces can
be defined as pairs of variables  which are not committed to
an input or output role while defining the submodels. So
submodel use is not constrained by the chosen formulation
of its internal specification.

• Inheritance is the sharing of description parts among
submodels based on a hierarchical relation ship. A generic
submodel can be defined broadly and then refined into
successively finer submodels. The common parts need to be
specified only once.

There are already several modeling languages based on these
ideas, and there is significant experience in using these
languages in various applications. Examples include: ASCEND
(Piela et al. 1991), Dymola (Elmqvist et al. 1996), gPROMS
(Barton and Pantelides 1994), NMF (Sahlin et al. 1996),
ObjectMath (Viklund and Fritzson 1995), Omola (Mattson et al.
1993), SIDOPS+ (Breunese and Broenink 1997), Smile (Kloas
et al. 1995), ULM (Jeandel et al. 1996) and VHDL-AMS (IEEE
1997). The aim of the Modelica effort is to unify the concepts
and to design a new uniform language for model representation.

Note that Modelica is a textual language, and as such more
relevant for software tool builders than for the physical systems
modelers. This is rather obvious, since Modelica is meant as a
new standard for exchange of models, model libraries and
experiments. Our experience is that graphically representing
models as interconnected submodels displayed as icons supports
their quick understanding. Furthermore, most contemporary
tools have graphical model editing facilities.

2.1 Essentials of Modelica
Essential features of Modelica are the following:

Models and submodels are declared as classes, with interfaces
that are called connectors. A connector must contain all
quantities needed to describe the interaction. Attributes can be
used to specify how the connections are converted to computable
code. Modification of a model definition is possible using the
extends construct. This way, for refinement of a generic
submodel into a more specific one, only the ‘new’ specific parts
need to be described. The common parts are inherited from the
more generic submodel, and need to be specified only once.

mailto:J.F.Broenink@el.utwente.nl
http://www.modelica.org
http://www.rt.el.utwente.nl/20sim
http://www.modelica.org
http://www.rt.el.utwente.nl/20sim
http://www.modelica.org


Jan F. Broenink Object-oriented modeling with bond graphs and Modelica

ICBGM’99, part of WMC’99, Jan 17-20, San Francisco pag 2 of 6

Models can have submodels that can have submodels
themselves. So, hierarchical modeling and inheritance are
supported.

The equations of the models are described non–causally, i.e. in a
delcarative style, as real equations in mathematical sense, not as
a procedure for computation (assignment statements). So, the
“=”–symbol means equality holding for all values of time, the
independent variable. Furthermore, it is possible to describe the
connections in terms of physical connections, i.e. pairs of
bilaterally computed power–conjugated variables. These pairs of
interface variables are not committed to an input or output role
while defining the submodels. So submodel use is not
constrained by the chosen formulation of its internal
specification. This implies that the internal description of a
model (its equations) can be separated from the interface, i.e.
when using such a submodel the exact contents of it need not be
known. Consequently, symbolic equation rewriting and sorting
is necessary to obtain simulatable code. This is taken care of by
the Modelica compiler. With this facility, encapsulation is taken
care of.

Furthermore, Modelica has a facility to specify how the
connections are converted to computable code. Two different
types of connection equations can be generated, namely:

• Equality: the matching variables of the interface elements
being connected, are equal.

• Sum–to–zero: the matching variables of the interface
elements being connected, sum to zero.

Which connection statement should be generated is specified at
the declaration of the connector. Using the prefix flow causes a
zero–to–sum equation be generated.An example is the connector
Pin for electrical networks:
connector Pin

voltage v;
flow current i;

end Pin;

A connection connect(Pin1, Pin2), with Pin1 and Pin2 of
connector Pin, generates 2 equations, namely Pin1.v = Pin2.v
and Pin1.i + Pin2.i = 0.

The sum–to–zero equation is an implementation of Kirchhoff’s
current law generalized to all physical domains. This
generalization is legitimate, as is done in bond graphs (summing
equations at the 0– and 1–junctions). However, this equation is
specified as a part of a connection, which makes that connection
not ideal anymore. Combining such a zero–to–sum equation in a
connection, implies that two different physical–system modeling
concepts, namely ideal connection and a Kirchhoff’s current /
voltage law are mixed. Note that, both in bond graphs and in
general graph theory, the edges between the vertices of a graph
denote an ideal connection only. For the Kirchhoff’s law
equations, separate submodels (vertices) are used. Also from the
point of view of object orientation, the combination of ideal
connection and Kirchhoff’s laws in one connect statement is not
according the standard ideas.

Note that in the standard network–like descriptions in Modelica,
one of the two variables in a connection has the tag flow, and
thus will be summed to zero.

2.2 Language constructs
Some essential language constructs are presented here, by
showing examples, taken from the Modelica bond–graph library
(Broenink 1997b).

Connectors specify interface elements whereby an arbitrary
amount of variables can be declared (see also section 2.1). A

bond–graph port, being the bond–graph interface element, is
defined as follows:
connector BondPort “Bond Graph power port”
    Real e “Effort variable”;
    Real f “Flow variable”;
end BondPort;

Note that for both variables the equality connect equations are
generated.

Furthermore, ports can have restrictions on the orientation of the
power flow and causality of the connected bond, which can be
specified as extra attributes. These restrictions are used to check
the validity of a connection of bonds to submodel ports, and can
also be used to support automatic connection of bonds to
submodel ports. For instance, passive elements (R, C, I) always
have the power flow into the element, to ensure positive
parameters. Causality restrictions are limitations on the causality
of the power ports, imposed on by the submodel specification
itself (either the submodel graph or the equations). For instance,
the storage elements (C, I) have a preferred causality constraint
to indicate that the integral form of the resulting equation is to be
preferred over the differential form. Source elements (Se, Sf)
have a fixed causality constraint and junction structure elements
(0, 1, TF, GY) have a constrained causality constraint, i.e. the
combination of ports gives a certain constraint on the
possibilities of the causality, given by the equations the element
represents.

This way of having extra attributes at the ports, let the properties
of the submodel internals necessary for connecting the ports, be
administered at the ports themselves. This contributes to the
encapsulation of the submodel internals (either bond graph or
equations). So, when using a submodel, only the interface
elements (ports including attributes) need to be checked.

For restriction on the power orientation, the direction attribute of
the Modelica connector is used. Unfortunately, there is no
special attribute for causality restrictions. Note that such a
causality restriction is only needed to check whether a given
connection of a bond onto a port is valid.

A signal connector is specified in the same way. Now, the
direction attribute can be used to specify the signal direction:
connector RealSignal “ Signal port”

Real s “Real signal”;
end RealSignal;

Models and submodels are specified using the model keyword on
the first line. The tag partial is used to stress the fact that the
model specification is incomplete, and must be completed in a
specialisation. In combination with the extends clause,
inheritance can be specified in a rather straightforward way. The
general OnePortPassive class gets specialized via a
OnePortEnergetic class to a bond–graph C–element, c1:
partial model OnePortPassive

“One port passive bond graph element”
BondPort p “Generic power port p”

end OnePortPassive;

partial model OnePortEnergetic
“One port storage element, being passive”

extends OnePortPassive;
Real  state “Conserved quantity”;

end OnePortEnergetic;
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model c1 “Bond Graph C element”
extends   OnePortEnergetic;
parameter Real  c “Capacitance”;

equation
der(state) = p.f;
p.e = state / c;

end c1;

The initial condition of the state variable can be specified as an
attribute belonging to that state variable.

The connect statement is used to connect interface elements. It
basically maps the corresponding variables of the first connector
to the second connector. Tagging a variable in a connector
declaration with flow causes a sum–to–zero equation be
generated for the variables involved, instead of an equality (see
section 2.1). Usually, in Modelica at least one variable gets a
flow tag. So, besides an ideal connection, also some network
equations (generalized Kirchhoff’s current law) are generated.

For bonds and signals we do use the connect statement. Since we
do not use the flow tag in the connector BondPort and
RealSignal (see the declaration above), the bond and signal
connections are ideal connections.  The generalized Kirchhoff
laws are implemented by the junction models (0– and 1–
junction, denoting a common effort, and summing the flows and
the other way arond for the 1–junction.

In the connect statement, however, the causality of the bonds
cannot be specified, because there is no data space available. To
correctly generate the equations, the Modelica compiler treats all
non–causal equations, including the connect equations, as one
large set of equations, from which via symbolic manipulation the
simulation model (i.e. a set of computable differential equations)
is derived.

Model equations are specified non–causally, and are real
equations in mathematical sense. The equations of the C–
element given above, however, are specified in a certain causal
form. This C–element could have been specified as:
c * der(p.e) = p.f

However, now no explicit state variable is specified, which
causes the inheritance tree of bond–graph basic elements rather
poor.

3 MAPPING BOND GRAPHS ONTO MODELICA
Mapping bond–graph models onto Modelica code is in principle
a straightforward process, especially since Modelica has both
non–causal equations and port–like interface facilities.
Furthermore, the Modelica specifications of the basic bond-
graph elements are available (Broenink, 1997b), or can easily be
made.

As indicated in section 2, a bond–graph port maps onto a
connector, a bond / signal maps onto a connect statement, and
bond–graph models and submodels map onto Modelica models
and submodels.

The coherence of the bond–graph elements can easily be
specified using the extends construct of Modelica. Single
inheritance can be specified straightforwardly (see also the
creation of the C–elment in sec. 2.2). Single inheritance is
sufficient for the basic bond–graph and block–diagram elements.

Using these inheritance features gives possibilities to build
libraries of submodels efficiently and elegantly.

Comments
The Modelica connect statement is not used in its original form
(i.e. with one flow variable), because this functionality (zero–to–

sum equations) is not applicable for bond–graph like modeling.
This is the reason why in Modelica the flow tag in a connector is
optional.

Bond graphs are port based and Modelica models are network
based. This difference in connecting strategy give rise to the
following remarks:

• The bond–graph one–port elements (C, I, R, Se, Sf) also
have one connector in their Modelica description, while the
original Modelica description of these elements all are
specialisations of the partial model TwoPin, which has two
connectors, and consequently represents more equations
than the bond–graph elements have. When using these
models in a circuit, however, neither connection strategy
has the minimum amount of equations in general.

• In the network connection strategy, to specify a connection
between three or more ports, more than one connect
statements is needed. This implies that for some connectors,
more than one connection is specified, which can disguise
sophisticated semantic checking.
Furthermore, the compiler needs to collect all these
connect, and combine them into one connect statement,
containing all flow–tagged variables. This is a rather
complex procedure.

• When specifying meshes, the connect statements will
generate one Kirchhoff’s current law to many (cf. Mattson
et al. 1997). The special ground model, not a specialisation
from TwoPin, takes care of this.

For exchange of bond–graph submodels, Modelica lacks some
expressiveness: Causality restrictions as attributes of the power
ports, cannot be specified in Modelica. Thus, Modelica is not the
optimal exchange language for bond–graph models. This can be
worked around by letting the bond–graph causality algorithms
distill the causal constraints from the equations before they can
process the model, which can be a time–consuming process.
Note that without the specification of causality restrictions, all
information to generate the equations is available. The Modelica
compiler generates equations without using causality or causal
constraints.

Note that the inheritance tree of the basic bond graph elements
only uses single inheritance, while multiple inheritance is needed
for more realistic models: an model of a DC motor can be a
member of the classes ‘DC motor’ and ‘tacho’, since the device
represented by the model can be used in two different ways.
Further elaboration on this subject can be found in Breunese et
al. (1998), and chapter two of Breunese (1996).

We did not investigate the way back: translating Modelica
models to bond–graph / block–diagram models. Considering the
expressiveness and aim of Modelica, it is problably not possible
to translate all Modelica constructs to bond–graph / block–
diagram constructs.

4 IMPLEMENTATION OF THE BOND GRAPH TO
MODELICA FILTER IN 20-SIM

We implemented a Modelica export filter in our bond graph /
block diagram modeling and simulation software 20-SIM
(Broenink, 1990; Broenink and Weustink, 1995; Broenink,
1997; Broenink 1998). It is an export filter from 20-SIM 2.3 to
Modelica 1.0.

Principally, in the code generation modules of the Graph Editor
(for bond graphs and block diagrams) and the Equation Editor of
20-SIM version 2.3, we added Modelica code generation
functionality (see figure 1). This means that Modelica code of
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every distinct submodel will be generated. The Modelica
translator still has to do its complete equation generation
process.

Another place to generate Modelica code would be in the 20-SIM
compiler, after any of the 3 phases (see figure 1). Since the
hierarchy of the models is flattened out due to the expansion
phase (inclusion of all submodel descriptions), the specific
object–oriented facilities offered by Modelica are not used here.
So, from a point of view of research on modeling languages,
placing the Modelica export filter in the 20-SIM compiler is not  a
good idea.

The translation process from SIDOPS, the modeling language of
20-SIM, to Modelica is in general a translation on syntactic level:
Each SIDOPS language construct translates to a Modelica
language construct.

Subtle differences are:

• In Modelica, declarations are in one list, whereas in
SIDOPS there are distinct declaration lists for parameters,
variables, state variables etc.

• The power direction of bonds is specified implicitly: the
first connector in a connect statement has power orientation
flowing out (the half arrow points from the first connector
to the second one).

• Since Modelica 1.0 does not support arrays of variables, for
junctions a Modelica model for each amount of ports need
to be specified: a two-port zero and one junction, a three-
port zero and one junction, etc. Fortunately, all information
to generate the correct code and use the appropriate
junction, is available at the point in the 20-SIM compiler
where the Modelica code generation is executed.

• The graphic coordinate systems are different, which causes
the translation to be a rather extensive but straightforward
procedure.

The current situation is that an export filter is made in 20-SIM
version 2.3 to Modelica 1.0 for graph models (both bond graphs
and block diagrams). Furthermore, a bond–graph library is build
in Modelica. Fortunately, the export filter is rather simple. It is
the straightforward code generation of one single (sub)model at
the time. This property is important, since both languages are
still under development. For equation models, the same design
can be used. It is expected that mapping SIDOPS functions onto
Modelica functions will not be a real problem. Specific
functionality, like hybrid model description features, might
cause a rather extensive translation procedure.

5 APPLICATION EXAMPLE
The application example we have chosen is a model of a
computer controlled system. The top–level model is shown in
Figure 2. The block–diagram submodels are standard 20-SIM
submodels, and the bond–graph submodels (ovals) are specific
for this application. The system consists of a DC motor driving a
load via a belt (e.g. a circular saw). The actuator is the DC motor
powered by a voltage source with a limiter in the input signal
coming from the controller. The process consists of the belt
system,  two pullies and a load. The sensor consists of a tacho
generator and an amplifier. For the tacho, we used the DC motor
model. The models of the actuator, process and sensor are shown
in figure 3, 4 and 5.

sensor1

sensor
..

process1

process
..

actuatr1

actuator
..

reference controller

Figure 2 Application example, called system1

Figure 3 The actuator.
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Figure 4 The process
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Figure 1 The structure of 20-SIM with the Modelica export filter
indicated.

:power
limiter

motor1

motor
.. actuationsteering

http://www.rt.el.utwente.nl/20sim


Jan F. Broenink Object-oriented modeling with bond graphs and Modelica

ICBGM’99, part of WMC’99, Jan 17-20, San Francisco pag 5 of 6
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Figure 5 The sensor, using the motor model as tacho.

The 20-SIM model code (SIDOPS) is given in listing 1 and the
Modelica code, generated by 20-SIM 2.3 (test version) is shown
in listing 2.

bond graph system version 1
subclasses

minus;1 minus_1
stepgen;1 reference
pid;1 controller
actuatr;1 actuator
process;1 process
sensor;1 sensor

connections
sensor`value -: minus_1`mininp
controller`control -: actuator`steering
minus_1`outp -: controller`error
reference`outp -: minus_1`plusinp
process`result -> sensor`measuring
actuator`actuation -> process`driving

Listing 1: The SIDOPS (20-SIM) code of system1

:// Modelica 0.91 code generated by 20sim2.3
// Preliminary test version

// All 20sim library directories are imported:
import "D:\Bnk\20simprj\Scratch\Scratch.mo";
import "D:\Program Files\20sim\blckdiag\blckdiag.mo";
import "D:\ Program Files\20sim\\siggen\siggen.mo";
import "D:\ Program Files\20sim\\bondgrph\bondgrph.mo";
import "D:\ Program Files\20sim\\control\control.mo";

model System1
minus1 minus_1;
stepgen1 reference;
pid1 controller;
actuatr1 actuator;
process1 process;
sensor1 sensor;

equation
connect(sensor.value, minus_1.mininp);
connect(controller.control, actuator.steering);
connect(minus_1.outp, controller.error);
connect(reference.outp, minus_1.plusinp);
connect(process.result, sensor.measuring);
connect(actuator.actuation, process.driving);

end ;

Listing 2: The Modelica code of system1

While comparing both model descriptions, one can see that both
codes seem rather similar. Note that no graphical information is
printed in both cases. The connections in 20-SIM are translated to
connect statements in the equation section of Modelica. In here,
the direction (either power direction or signal direction) is fixed
from the first to the second argument. Since this code is
generated automatically, this is not a real restriction.

6 CONCLUSIONS
The export filter of 20-SIM to generate Modelica code has been
built, although it is still in an experimental form. Modelica code
generation of bond–graph models appeared to be a rather
straightforward process.

The basic bond–graph elements and block–diagram elements
have been specified in Modelica, using the essential object–
orientation features inheritance and encapsulation. Equations
have been specified in an acausal format. Thus, it can be said
that the bond–graph library in Modelica is in the spirit of both
bond–graph modeling and object–oriented physical systems
modeling as advocated by Modelica.

Unfortunately, causality restrictions cannot be specified in
Modelica. Due to this lack of expressiveness, Modelica is not the
perfect exchange language for bond–graph models, but since
Modelica is still under development, it might be better in the
future.

This activity, building an export filter from bond graphs to some
object oriented modeling language and building model libraries,
indicates that bond–graph modeling can be seen as a form of
object–oriented physical systems modeling. Since bond graphs
came into existence before the term object orientation was used
in the field of physical systems modeling, bond graphs can be
seen as an object-oriented physical systems modeling paradigm
avant-la-lettre.
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