
The Architecture of the Smile/M Simulation Environment
Thilo Ernst, Stefan J¨ahnichen, Matthias Klose

GMD FIRST Research Inst. for Computer
Architecture and Software Technology

Rudower Chaussee 5
D-12489 Berlin, Germany

Technical University of Berlin
Software Engineering Research Group

Franklinstr. 28/29
D-10587 Berlin, Germany

Thilo.Ernst@gmd.de, fjaehn,doko g@cs.tu-berlin.de

Abstract
Smile is an object-oriented, equation-based, hybrid modeling and simulation environment. The
focus of this paper is the extension (Smile/M) of the Smile system to Modelica, a new modeling
language currently being defined in an international collaboration effort. An overview of this lan-
guage, which may well become a quasi-standard in the simulation community, is given. Interfacing
Smile to Modelica will enhance the interoperability of the system and allow the reuse of models
developed in other environments.

1 Introduction
With the advent of highly productive and user-friendly simulation environments, mathematical mod-
eling and simulation becomes more and more an everyday tool in engineering [2] [4] [7] [10]. A
considerable number of such environments is available both from industrial vendors and from re-
search organizations. However, many of them originated from specialized application domains, only
very few were designed for general applicability. Recent results and trends in computer science were
not always taken into account, so openness and other architectural considerations were not usually
given appropriate priority.

As a consequence, the majority of available systems lacks satisfying interoperability: Usually, an “im-
port” of models expressed in formalisms different from the native modeling language is impossible or
subject to severe restrictions; the integration of simulation modules implemented with other tools (or
standard programming languages) is difficult, if at all possible. These difficulties become more and
more pressing as the trend in engineering work shifts towards problems requiring multidisciplinary
cooperation, and thus also the combination of domain-specific simulation components. Relief could
be provided by a common modeling formalism — an exchange medium between the various simula-
tion environments, each of which would then only have to be extended with appropriate import/export
features. However, up to now no such common formalism has emerged.

Modelicais an ongoing international effort aimed at designing such a uniform modeling language; to
our knowledge there is only one other standardization effort: VHDL-AMS [8] (earlier called VHDL-
A [3]), which however lacks full object orientation and suitability for non-causal modeling. Within
the Esprit projectSimulation in Europe Basic Research Working Group (SiE-WG), in October 1996
an effort was started to design a new, unified language for physical systems modeling. Beyond the
central goal of creating a common platform to ease exchange of models and model libraries, this effort
is intended to unify and generalize on innovative concepts from several modeling languages.

This paper describes the Smile simulation environment, gives an overview of Modelica and shows
how Smile is being adopted to process Modelica.

2 The Smile System
Smile [5] [12] is a simulation environment based on a combination of innovative concepts: Object-
oriented and equation-based modeling, separation of model and experiment description, and an open
and extensible system architecture. Smile was developed at TU Berlin and GMD FIRST and has an
active user community whose main emphasis is currently on energy systems (see e.g. [6]).

The Smile system consists of the Smilemodeling languageto express the mathematical model of a



physical system in, theexperiment descriptionlanguage to configure an experiment, a set of numeri-
cal solvers (discussed in [11]), an interactive runtime support and a developer tool for browsing and
exploring the object-oriented model libraries. A characteristic of the Smile system is the strict sepa-
ration of model and experiment. This separation is reflected in the Smile system by the provision of
two distinct languages — the model description language and the experiment description language.

The Modeling Language. The Modeling language Smile was designed as an extension of Objec-
tive C, which itself is an object-oriented general-purpose language based on C and Smalltalk. By
adding means to express different types of equations, to define a connection interface, and to specify
connections, Smile becomes an equation-based object-oriented simulation language.

The modeling language combines advantages of two concepts, and thus provides the user with means
to conveniently model physical systems: On the one hand, the characteristics and behaviour of a
real-world object can be described in the form of differential and algebraic (discrete and continuous)
equations, and on the other hand, the object-orientation of the language means that it also provides
the user with the means to structure the system in a natural way. The description of the characteris-
tics and behaviour of a real-world object is encapsulated in a class definition. Further structuring is
possible by allowing object-valued variables as components of a class. This part-of relation allows
the system to be decomposed into sub- and subsubsystems. Thus, large and complex systems can be
structured and modeled in a hierarchical manner. In addition to the well-known advantages of object-
orientation, such as the reusability, extensibility and easy specialization of models, this also yields a
further advantage, which is especially useful to the simulation engineer: subsystems can be validated
independently from the compound model they will be part of.

@interface HeatStore : Model f
@export

double T [eq, doc: "Temperature", unit: "K"];
@intern

double m [doc: "Mass", unit: "kg"];
double cp [doc: "Specific heat capacity",

unit: "kj/kg/K"];
double dQ [doc: "Chng of Energy", unit: "kJ/s"];

g @end

@implementation HeatStore

@eq diff T
f

return dQ / (m * cp);
g

@end

In the example above the definition of theHeatStore is divided into two parts. In the interface,
the model variables are declared with a visibility specification: exported variables become part of the
connection interface. Attributes related to variables specify, for example, a short textual description
or its unit. In the implementation part relationships among variables can be expressed with equations.
Specialized or extended models can be derived from base models by using the inheritance relation.
ThePlate model used in the example below is derived by using this relation. TheStove model
shown below is built-up of instances of thePlate model (part-of relation). The components of
a model are initialized in the context of theStove model by the@component construct (arrays
of components are conveniently initialized by a single construct). Connections between variables
belonging to the interface part of models are connected by the@connect construct.

@interface Stove : Model f
@protected

Plate *myplate[4];
double Power [unit:"kJ/s",

doc:"Power supply of stove"];
@export

double OutP[4] [eq, unit:"kJ/s",
doc:"Power->Plate"];

...
g @end

@implementation Stove
@component myplate[i] f

// initialization of myplate[i]
// for the context of the stove

g
@connect f

myplate[0..3].InP = OutP[0..3];
g
@eq discrete OutP[i:0::3] f ... g

@end

The Runtime Environment. The modeling language supports the user in the modeling phase of
the simulation process. The next step in the process is the actual description and execution of an
experiment. This is done by anexperiment descriptionwhich specifies a particular Smile model that
must be simulated and instantiates both the specific parameters of this model (e.g. start values) and



certain global simulation parameters (e.g. simulation time, selection of output, type of the numerical
solver to be used). This information is then used to link the compiled Smile model to the runtime en-
vironment, and possibly further external code, producing an efficient, executable simulation program,
which can also be accessed interactively by the user.

3 The Modelica Language
The Modelica language integrates concepts from many simulation languages, e.g. ASCEND, Dymola,
gPROMS, MOSES, NMF, ObjectMath, SIDOPS+, Smile, and ULM. More specific information can
be found on the Modelica website [9].

The first phase of the Modelica design effort focused on continuous systems modeling since for this
field there is a generally accepted mathematical framework — differential-algebraic equation (DAE)
systems — and a large body of experience. Discrete features also were included from the beginning
to allow handling of discontinuities and sampled systems. A primary design goal is extensibility
so the language can be successively generalized to a multi-domain and general-purpose modeling
formalism. In the following, selected language features are described.

Object-Oriented, Equation-Based Physical Systems Modeling — the Class Concept.By the
success of general-purpose programming languages such as Java, Eiffel and C++, object-orientation
has proven to be a very powerful concept. It improves the developer’s productivity by supporting
reuse and extensibility, and provides a high level of abstraction for the modeling of complex systems.
However, despite the fact that this concept indeed originated in the realm of simulation (Simula67
language), it is not yet widely applied in modeling and simulation languages.

As, however,object-oriented modelingalready demonstrated its
merits in a few modeling and simulation languages (e.g. Object-
Math, Omola, and Smile), it was decided to base Modelica on this
paradigm. Consequently, theclassis the central unit of modulari-
sation in Modelica, and the main building block of model descrip-
tions. The class concept has strong similarities to that of general-
purpose OO-languages, but also differences.

class LowPassFilter f
parameter Real: T=1;
Real: u, y(Start=1);

equation
T*der(y) + y = u;

g

Each class has a name and bundles a set ofcomponents(which arequantity variablesor parameters)
with equationsrelating to these quantities and parameters. Each component has a type (which is a
class). The example shown right demonstrates some more features:

� The first component declaration contains aparameter specifier which asserts that the value
of this component will not change during a simulation run. (A more restrictiveconstant
specifier exists which asserts that the corresponding value willneverchange.) Parameters can
be assigned values in the declaration (T=1).

� The second declaration demonstrates how theStart attribute (component) (which eachReal
variable has) receives a value by themodifier(Start=1) .

� The equation section has a single equation which relates the quantities u and y (input and output
of the filter).der(y) denotes the derivativedy=dt.

Having modeled theLowPassFilter , we
can demonstrate its use in the model de-
scription displayed on the right side. The
class keyword in Modelica also has
a set of specializing synonyms (block ,
connector , model , record , type ) each
of which asserts that this particular class
fulfills special restrictions. This enables ad-
ditional consistency checks and improves

class FiltersInSeries f
// two instances, different parameters
LowPassFilter: F1(T=2), F2(T=3);

equation
// TIME is the independent variable
F1.u = sin(TIME);
// connect first to second filter
F2.u = F1.y;

g



readability, but semantically, in a valid model, all of the synonyms can be replaced byclass without
changing the model’s behaviour.

Inheritance. Class definitions can use inheritance to re-
use the components of existing classes (by inclusion).
Multiple inheritance is available (in case of repeated in-
heritance conflicts are forbidden).

class LowPassFilter5 f
extends LowPassFilter(T=5);
// ... more extensions

g // for new class ...

In theextends clause (which expresses inheritance in Modelica), component modifers are allowed
so as to enable specialization of the class being inherited from “on the fly” as shown above.

For simple cases where inheritance as shown above is employed
only to make available for reuse a version with minor modifica-

class LowPassFilter5
= LowPassFilter(T=5);

tions, there is also an equivalent shorthand syntax as shown to the right.

Unlike with general-purpose object-oriented programming languages, the class hierarchy of Model-
ica is not consulted in type compatibility checks; only structural equivalence is important, not the
“inheritance history”. (The type system of Modelica is built on ideas from [1].)

Genericity, Redeclarations, Partial Models. Often it is possible — and desirable w.r.t. the goal
of reusability — to capture the behaviour of a whole set of models in a single description containing
“loose ends”, i.e. places where information is missing or represented just by a placeholder. Mod-
elica offers three mechanisms to express that:type parameters(calledvirtual classes), a component
redeclarationfeature, andpartial (incomplete) classes.

Class definitions can contain declarations of the form: virtual class PName = DName;
This introducesPNameas the name of a type parameter — it can be used as a type name in sub-
sequent component declarations, all of which will be affected when atype parameter substitution
substitute class PName=TName; occurs later on.DNameis the name of adefault typefor the

type parameter; the default type will be substituted as long as no explicit type parameter substitution
is active; it also constrains the possible actual types to be substituted.

For the simple case where it is sufficient to change the type of individual components in a descendant
class to express the specialization of a model, thesubstitute specifier can also be used to indicate
a redeclaration, e.g.: substitute MyLowPassFilter: F2;

A class definition can be declaredpartial to indicate that it is incomplete. Such a class cannot be
used in component declarations as it is; first it has to be completed by defining a descendant class
which fixes the loose ends (missing equations or type parameters without a default type).

Built-in Types and Basic Types. In Mod-
elica, all type names are class names,
even the atomic built-in types (RealType ,
BooleanType etc.). Thebasic typesnor-
mally employed by the modeller (Real ,
Boolean etc.) are descendant classes of
these built-in types. Their definitions are
known (and expressed in Modelica), each
mainly adding a set of attributes to the cor-
responding built-in type, e.g.:

type Real f
extends RealType, VariableAttributes;
parameter StringType: Quantity = "";
parameter StringType: Unit = "";
parameter Alternative(Equal, Sum):

Connection = Equal;
parameter RealType: Min=-Inf,

Max=+Inf;
// Initial and restart value
parameter RealType: Start = 0;
// ...

g

Connections. Connections between submodels can be expressed by the specialCONNECToperator
which is used in the equation section. This operator has the effect of generating equations according
to theConnection attributes of its arguments (i.e. components), which can take the valuesEqual ,
Sum. For Equal variables, the arguments ofCONNECTare simply set equal; forSumvariables, a
zero-sum equation involving the arguments of theCONNECTis generated. This corresponds to the
notions of “accross” and “through” variables found in several modeling and simulation systems and
languages.CONNECTcan be applied to structured components, which are automatically decomposed.



connector classes can then be used as convenient encapsulations of complex interfaces between
submodels bundling several components (which in turn can be structured as well).

Units and Quantities. It is often considered desirable to associate units of measurement (e.g. from
the SI system) and quantity category names (“length”, “pressure”, etc.) to the quantity variables
found in a model description, so many simulation languages or systems offer features for that purpose.
That way, more “physical” information is retained in the model description, allowing e.g. unit-based
consistency checks of equations.

As, however, not all modeling languages which Modelica is intended to unify can handle this kind of
information, Modelica does not “hard-wire” any details (such as a concrete system of physical units
and quantity names) into the language. This information is completely optional, and Modelica only
offers standardized “hooks” ensuring that it can be associated to the quantity variables and retrieved in
a unified manner. Even that is not provided in the language itself, but in the (standardized) definition
of base types: e.g. theReal class above contains string attributesQuantity andUnit which are
reserved for the purposes described above. The official definition of Modelica will specify the use of
these attributes in more detail (e.g. refer to a standardized syntax for expressing compound SI units
by ASCII character strings).

Other Features. In this paper, only a subset of important features of the Modelica language were
presented. Besides those parts of the language that strongly resemble existing general-purpose pro-
gramming languages (e.g. the basic expression syntax, user-defined functions), there are special
features to support regular model structures, hybrid (continuous/discrete) models, conditional and
structure-changing models, the mapping of model descriptions to graphic symbols, matrix opera-
tions, and many others, some of which are still subject to ongoing development.

4 The Smile/M Architecture
The Smile system [5] [12] is being extended by
a Modelica compiler. Rather than generating
Smile model descriptions as an intermediate form,
the Modelica compiler will directly generate the
model code suitable for cooperating with the other
components of the Smile system. As was the orig-
inal Smile compiler, this compiler is being devel-
oped using advanced compiler generation tools.
The runtime system is extended to support fea-
tures currently not found in the Smile modeling
language, but which are required to support the
Modelica language., e.g. support for conditional
and structure-changing models.
The separation of model and experiment descrip-
tion in the original Smile system has proven valu-
able and will be maintained in the new sys-
tem. Since, however, the experiment descrip-
tion compiler turned out to be somewhat unflex-
ible, an interpretativeexperiment shellis being
added based on an existing “scripting language”.
In addition to the simulation configuration in the
experiment description, it allows to customize the
flow of control of a simulation run and to embed a simulation run e.g. in an optimization framework.

Further new components, such as a genericgraphical model editorsupporting several graphical mod-
eling styles, the application of an object-based repository for storing model and experiment descrip-



tions, and improvements to the existingvisualizationandoptimization componentsare being consid-
ered, too.

5 Conclusions
This paper presented the extension of Smile, a modeling and simulation environment developed at
TU Berlin and GMD FIRST, to Modelica, an emerging (quasi-)standard language for object-oriented,
equation based, hybrid modeling and simulation. Modelica generalizes on concepts found in Smile
and opens up new dimensions of interoperability. An overview of this language and its development
was given.

References
[1] M. Abadi and L. Cardelli.A Theory of Objects. Springer, New York, Berlin, 1996.

[2] M. Andersson.Object-Oriented Modeling and Simulation of Hybrid Systems. Department of Automatic
Control, Lund Institute of Technology, Lund, 1994.

[3] J. Barby. The need for a unified modeling language and VHDL-A. InProceedings of 1996 IEEE Inter-
national Symposium on Computer-Aided Control System Design, pages 258–263, 1996.

[4] P.I. Barton and C.C. Pantelides. Modeling of combined discrete/continuous processes.AIChE J., 40:966–
979, 1994.

[5] M. Biersack, V. Friesen, S. J¨ahnichen, M. Klose, and M. Simons. Towards an architecture for simulation
environments. In T. I. Vren and L. G. Birta, editors,Proceedings of the Summer Computer Simulation
Conference (SCSC’95), pages 205–212. The Society for Computer Simulation, 1995.

[6] G. Bartsch et al. Entwicklung rechnergest¨utzter Simulationshilfen zur Beschreibung des Energieverhal-
tens komplexer energiewandelnder Systeme. Abschlußbericht des universit¨aren Forschungsschwerpunk-
tes 4 der Technischen Universit¨at Berlin. Teil 1. Technical report, TU Berlin, 1997.

[7] P. Fritzson et al. High-level mathematical modeling and programming.IEEE Software, 12, July 1995.

[8] IEEE DASC 1076.1 Working group. Analog and mixed signal extensions to VHDL.
http://vhdl.org/vi/analog, 1997.

[9] The Modelica Design Group. Modelica – a unified object-oriented language for physical systems model-
ing (draft). http://www.dynasim.se/Modelica/, 1997.

[10] D. Brück H. Elmqvist and M. Otter. Dymola — user’s manual. Technical report, Dynasim AB, Research
Park Ideon, Lund, Sweden, 1996.

[11] C. Klein-Robbenhaar. Numerical methods for dynamic simulation of thermal energy systems: a case
study. In this volume.

[12] M. Kloas, V. Friesen, and M. Simons. Smile — A simulation environment for energy systems. In
A. Sydow, editor,Proceedings of the 5th International IMACS-Symposium on Systems Analysis and Sim-
ulation (SAS’95), volume 18–19 ofSystems Analysis Modelling Simulation, pages 503–506. Gordon and
Breach Publishers, 1995.

[13] H. Tummescheit and R. Pitz-Paal. Simulation of a solar thermal central receiver power plant. In this
volume.


