
Proceedings of the 9th European Simulation Symposium, ESS'97, Oct 19-23, 1997, Passau, Germany

ON MODELING OF HEAT EXCHANGERS IN MODELICA

Sven Erik Mattsson

Department of Automatic Control
Lund Institute of Technology

Box 118, SE-221 00 Lund, Sweden
E-mail: SvenErik@control.LTH.se

ABSTRACT

It is demonstrated how ModelicaTM is used in an ap-
plication to develop models that are useful when solv-
ing real problems. Modelica is a new unified modeling
language being developed in an international effort to
promote object-oriented and non-causal modeling, and
exchange of model libraries. The application is a heat
exchanger where the media are liquids, typically wa-
ter. This type of heat exchangers can be used for dis-
trict heating of houses and for production of hot tap
water. The model developed illustrates very nicely the
power of Modelica. The modularization concepts support
flexible model components which are easy to use and
to adapt when making a model of a real system with
heat exchangers. The concept of class parameters sup-
port medium parameterization and arrays of model com-
ponents support discretization. The expressive power
of Modelica allows complete listings of the developed
model components to be given. The model produces sim-
ulation results that agree very well with measured data.

INTRODUCTION

A new language called Modelica1 for physical modeling
is developed in an international effort. The main ob-
jective is to develop a new unified modeling language
which promotes exchange of models and model libraries
and which supports non-causal modeling with true ordi-
nary differential and algebraic equations and the use of
object-oriented constructs to facilitate reuse of modeling
knowledge.

This paper demonstrates how Modelica is used in
a specific application to develop models that are use-
ful when solving real problems. The task is to develop a
model for a heat exchanger where the media are liquids.
The model developed is good enough to be used to solve
real problems but simple enough to allow a detailed ex-
planation in a conference paper. The paper discusses
major issues such as decomposing the physical descrip-
tion of the heat exchanger from the properties of the me-
dia in a powerful way. The concepts of Modelica will be
described and explained when needed in the modeling
process. For more information on Modelica see Elmqvist
and Mattsson (1997b), Elmqvist and Mattsson (1997a)
and http://www.Dynasim.se/Modelica/.

1Modelica is a trade mark of the Modelica Design Group

The application is a heat exchanger CB50 which is
a part of the TS30 unit from Alfa-Laval Thermal for
heating and production of hot tap water for a one-family
house. Figure 1 contains a schematic diagram where the
radiator part is left out. In the primary circuit flows hot
district heating water, which is used to heat the water
in the secondary circuit to produce hot tap water.

A heat exchanger model which describes the rela-
tions between the pressures, the rates and the tempera-
tures of the flows at the four ports of the heat exchanger
is to be developed. For clarity the focus is on heat ex-
changers where the media are single medium liquids.
Basic relations which can be found in good standard
textbooks, e.g., Holman (1972) are used to describe be-
havior. Validations against measured data from a TS30
heat exchanger unit show a very good agreement be-
tween measured and simulated behavior.

Heat exchangers are very common components in
chemical process systems and energy systems includ-
ing power generation and heating and ventilation. To
minimize energy losses, it is important to have optimal
systems, where both static and dynamic properties of
the components are adjusted to each other. Typically
the static behavior of a heat exchanger is well-known,
while the dynamical behavior of a system of connected
valves, pumps and heat exchangers is less known. Thus,
there is a need for mathematical models and dynamic
simulation.

A
V

T
Q

20

Hot water from heating unit Hot tap water

Cold water

Recirculation to heating unit

Figure 1 A schematics of the heat exchanger unit TS30
with a measurement logging system.

1

BASIC MODEL STRUCTURE

The first step of the object-oriented approach when
modeling a component is to identify the ways in which
it can interact with its environment. The behavior of
a component can then either be described in terms
of equations or as interconnected components. The
modeling approach is hierarchical.

A heat exchanger has two ducts with two ports each.
These four ports constitute interfaces to which other
components can be connected as shown in Figure 1.

Variable types
The essence of physical modeling is to describe behavior
in terms of mathematical relations between physical
quantities. In Modelica the type for pressure quantities
is declared as

type Pressure = Real(Unit = "Pa");

where Real is the name of a predefined type. A real
variable has a set of attributes such as unit of measure,
minimum value, maximum value and initial value.

To simplify the use of Modelica and to support com-
patibility, there is an extensive standard library of type
definitions which is always available with every Model-
ica translator. The type definitions in this base library
are based on ISO 1000 and its naming conventions for
physical quantities.

Connectors
Interaction between model components is described by
connecting connectors in Modelica and can graphically
be represented by lines. A Modelica model defined
graphically will contain graphical information specify-
ing positions of submodels and connectors, paths for
connections and graphical icon representations. Model-
ica defines a format for graphical annotations to make
icons and model diagrams portable. All the graphical in-
formation is left out in the listings presented in this pa-
per. Interactive browsing tools to list textual represen-
tations should be able to filter out graphical information
to make the listings shorter and more transparent.

Defining a set of connector classes is a good start
when a library for a new application domain of is to be
developed. A common set of such definitions, used in all
components in the library, promotes compatibility.

The status at a port of the heat exchanger can
be described by one pressure, one temperature and
one volume flow rate, if single medium liquid flows
are assumed and if there is no interest in describing
pressure, temperature or velocity profiles over the port
area. To support this, a connector class is defined as

connector FlowInlet

Pressure p;

flow VolumeFlowRate q;

Temperature T;

end FlowInlet;

A connection between two connectors means that
the components having the same names are connected

to each other down to the levels of simple quantities.
The natural meaning of connecting quantities such as
pressure, temperature, voltage and position, is that they
should be equal, while for flow rates, currents, forces,
torques etc. the physical meaning is that they should
sum to zero. A sum-to-zero equation is generated when
the prefix flow is used in the connector definition.
In Modelica the convention is that a flow into the
component is counted as positive.

The interface
The Modelica model

partial model HEXShell "Base class for

heat exchanger and section models"

FlowInlet A1, A2, B1, B2 "Ports";

parameter HEXParameters Pars;

virtual model LiquidA = BasicLiquid;

virtual model LiquidB = BasicLiquid;

end HEXShell;

outlines the interface part of a heat exchanger model.
The keyword partial indicates that this model class is
incomplete. At various places such as between the name
of a class and its body or after a component declaration
it is allowed to have a string. It is treated as a comment
attribute and is meant to be a documentation that tools
may display in special ways. Due to space limitations
comments will be left out in the following.

The model declares four ports: A1, A2, B1 and B2. The
model will not assume any specific port to be inlet or
outlet. Which ports that are inlets and which ports that
are outlets depend on the actual flows. The two ducts of
the heat exchanger will be called DuctA and DuctB. See
Figure 2. The two ports of DuctA will be referred to as
A1 and A2 and the two ports of duct B will analogously
be referred to as B1 and B2. It will be assumed that the
ports A1 and B1 are at one end of the heat exchanger
and that the ports A2 and B2 are at the other end. For
example, if there is a flow from A1 to A2 and a flow
from B1 to B2 then the heat exchanger is operated as a
parallel flow heat exchanger. But if the flow in DuctB is
from B2 to B1 then the heat exchanger is operated as a
counter flow heat exchanger.

HEXShell declares a structured parameter Pars to
describe physical properties such as dimensions. The

A1

B1

A2

B2

DuctA

Wall

DuctB

Figure 2 A conceptual picture of a heat exchanger.

2

keyword parameter specifies that Pars is constant dur-
ing a simulation experiment, but can change value be-
tween experiments. The idea is to make it simple for a
user to modify the behavior of a model. The physical pa-
rameters of the heat exchanger will be identified along
the derivation of the behavior.

LIQUID MODELS

The heat exchanger model needs models of the liquids
flowing in the two ducts. The model HEXShell defines
two model classes parameters, LiquidA and LiquidB, for
describing the properties of the media in the two ducts.
The idea is to have a well defined interface between
the description of the heat exchanger and the media to
make it easy to modify the heat exchanger to cope with
different media and descriptions of different complexity.
The medium models are to be used in the duct models.
On the heat exchanger level there is no use of medium
models, but to make it easier for the user to change
medium models, the classes of the medium models are
made parameters of the heat exchanger model.

The default class BasicLiquid specified by the model
can be declared as

model BasicLiquid

Pressure p;

Temperature T;

Density rho;

SpecificHeatCapacity c;

end BasicLiquid;

Each actual liquid model must at least contain the
attributes p, T, rho and c, since an actual model must
contain all public components of the default class.
Note that an actual model need not be constructed by
inheritance from the default class. Such a requirement
would have made it difficult to use models developed
at various places. There is just a requirement on
agreement of the names of the components.

In the future there will hopefully be standard models
available in Modelica for many media in the same
way as there are data bases for physical properties
today. Medium models may actually be implemented as
interfaces to such databases.

For water it is often sufficient to use constant values
for density and heat capacity. Such a model can be
declared in the following way:

model BasicWaterModel =

BasicLiquid(rho = 1000, c = 4180);

It means that rho and c become constant with the
given values. It is not possible to change these values
interactively between simulation runs. To allow this the
model must be declared as

model BasicWaterModel1 = BasicLiquid(

redeclare parameter Density rho = 1000,

redeclare parameter SpecificHeatCapacity c=4180

);

which turns rho and c into parameters and sets default
values, which may be changed interactively between

simulation runs.
It is important to include information that makes

it possible to check the validity of a model. A simple
approach is to specify ranges for the variables. The
model for water is not valid when the water is freezing
to ice or boiling to steam. For normal pressures, the
condition can be expressed in terms of the temperature,
which should be between 273 K and 373 K. To include
this condition in our model we modify it as

model BasicWaterModel2 =

BasicLiquid(T(Min = 273, Max = 373),

rho = 1000 , c = 4180);

A more general condition can be included in the
equation section by specifying an assertion as

assert condition;

It is simple to make a liquid model in which the
density is temperature dependent. It is just to include
the relation and possibly declare some parameters. A
model which assumes a linear expansion of volume with
temperature may be declared as

model BasicLinearLiquid

extends BasicLiquid;

parameter Temperature T0;

parameter Density rho0 "at temperature T0";

parameter CubicExpansionCoefficient alphaV;

equation

rho = rho0/(1 + alphaV*(T-T0));

end BasicLinearLiquid;

The statement “extends BasicLiquid” means that the
model BasicLinearLiquid inherits all properties of
BasicLiquid. The model BasicLinearLiquid specifies
in addition three parameters and a affine relation
between density and temperature.

A model for water is specified as

model BasicLinearWaterModel =

BasicLinearLiquid(T(Min = 273, Max = 373),

T0 = 293, rho0 = 998,

alphaV = 0.00018, c = 4180);

BEHAVIOR DESCRIPTION

Heat exchangers may internally look very different, but
the basic idea is to let two media, which flow on the
two sides of the wall, exchange heat through the wall
without being mixed. A heat exchanger consists from a
conceptual point of view of two ducts with a common
wall through which heat can flow. See Figure 2. The
model will be based on this conceptual view.

The complexity of using partial differential equa-
tions to describe the heat transfer from the hot side
to the cold side can be avoided, since we do not have
the ambition to describe the internal behavior of the
heat exchanger for example in order to calculate ther-
mal stresses. A common approach which divides the
heat exchanger into a number of slices or sections along
the direction of the flow will be taken. Such a section
consists of two duct sections and one wall section.

3

A DUCT SECTION MODEL

Port1 Port2

Wall

Figure 3 The connectors of a duct section.

A Modelica model for a duct section is given in Listing 1.
As indicated in Figure 3 three connectors are needed.
These are defined first in the model HEXDuctSection.
There are Port1 and Port2 for the liquid flow and Wall

to describe interaction with the wall. Then the model
defines a parameter record, Pars, and a class parameter,
Liquid, for the liquid properties in order to make it easy
to exchange medium models.

Let us consider the behavior description and discuss
the equations in turn.

Assume that the duct is filled all the time and that
the liquid is incompressible. Then the mass balance
degenerates to the fact that the volume inflow rates at
the two ports must sum to zero.

q1 + q2 � 0 (1)

The model HEXDuctSection uses Port1.q to represent
the volume inflow rate, q1, and Port2.q to represent q2.
Thus Equation (1) becomes Port1.q + Port2.q in the
model HEXDuctSection.

The pressure drop over the duct is modeled as

p1 − p2 � ρ
C2

v
tq1tq1 (2)

where p1 and p2 are the pressures at the two ports, ρ
is the density of the liquid and Cv is a constant.

The heat balance of a duct gives

dH
dt

� Φw + Φ1 + Φ2 (3)

where H is the enthalpy. The left hand side of the
balance equation represents the change of the thermal
energy in the duct. The first term of the right hand side,
Φw, is the rate of the heat flow across the wall into the
duct and Φ1 and Φ2 are the changes of thermal energy
of the duct due to the flow through the two ends of the
duct;

Φ i � ciρ iqiTi, i � 1, 2 (4)

where the factors of the right hand side represent
properties of the flow at the port; ci is the specific heat
capacity, ρ i is the density, qi is the volume flow rate and
Ti is the temperature.

The enthalpy is given by

H � cρ VT (5)

connector WallConnector

VolumeFlowRate q;

Temperature T1, T2, T;

flow HeatFlowRate Phi;

end WallConnector;

record DuctParameters

Volume V;

Area Cv;

end DuctParameters;

model HEXDuctSection

FlowInlet Port1, Port2;

WallConnector Wall;

parameter DuctParameters Pars;

virtual model Liquid = BasicLiquid;

Liquid L1 "The liquid at Port1.";

Liquid L2 "The liquid at Port2.";

Temperature T;

Density rho;

SpecificHeatCapacity c;

Enthalpy H;

equation

// Hydraulics

Port1.q + Port2.q = 0;

Port1.p - Port2.p =

rho/Pars.Cv^2*abs(Port1.q)*Port1.q;

// Thermodynamics

der (H) = Wall.Phi +

L1.c*L1.rho*Port1.q*Port1.T +

L2.c*L2.rho*Port2.q*Port2.T;

H = rho*Pars.V*c*T;

T = if Port1.q > 0 then Port2.T else Port1.T;

rho = if Port1.q > 0 then L2.rho else L1.rho;

c = if Port1.q > 0 then L2.c else L1.c;

// Communication

Wall.q = Port1.q; Wall.T = T;

Wall.T1 = Port1.T; Wall.T2 = Port2.T;

L1.p = Port1.p; L2.p = Port2.p;

L1.T = Port1.T; L2.T = Port2.T;

end HEXDuctSection;

Listing 1 A model of a duct section.

where V is the volume of the duct and T is a repre-
sentative mean temperature of the liquid. The specific
heat capacity, c, and the density, ρ are to be taken at
that temperature. The temperature at the outlet will be
assumed to be T ;

T � if q1 > 0 then T2 else T1 (6)

Validations against measured data indicate that this is
a valid approximation so it seems not useful to introduce
more dynamics or delays from T to the temperature
at the outlet. The approach to view T to be the mean
value of the temperatures at the port, T � (T1+ T2)/2,
has the drawback that an increase of the temperature
at the inlet implies an instantaneous decrease of the
temperature at the outlet, since T due to the dynamics
does not respond instantaneously.

The last four lines set up the interaction with the
wall and the liquid models.

4

A HEAT TRANSFER MODEL

A Modelica model for a wall section is given in Listing 2.
First, it defines two connectors WA and WB for the inter-
action with the ducts. The meaning of the parameters
and the other quantities will be explained below when
we discuss the equations in turn.

The model of the heat transfer through the wall
focuses on the heat flow across the wall. Heat flow along
the wall is neglected as well as the heat capacity of the
wall, which means

ΦA + ΦB � 0; (7)

The heat flow rate across the wall is modeled as

ΦB � ∆Tm/R (8)

where R is the overall thermal resistance between the
two ducts and ∆Tm is a suitable mean temperature
difference between the two ducts along the wall.

To obtain a model that has a statically correct
behavior, the common approach is to take ∆Tm as the
log-mean temperature difference, ∆Tlm, defined as

∆Tlm � ∆T1 − ∆T2

ln(∆T1/∆T2) (9a)

where ∆T1 � TA,1 − TB ,1 and ∆T2 � TA,2 − TB ,2 are
the temperature differences at the two ends of the duct.
The formula is badly conditioned if ∆T1 � ∆T2 so when
t∆T1 − ∆T2t < 0.05 max(t∆T1t, t∆T2t) it is better to use

∆Tlm � 0.5(∆T1 + ∆T2) �(
1− 1

12
(∆T1 − ∆T2)2

∆T1∆T2
[1− 1

2
(∆T1 − ∆T2)2

∆T1∆T2
]) (9b)

which gives a relative error which is less than 10−5.
Equation (9) is implemented a bit more elaborately
to avoid divisions by zero. A good model compiler
will detect that the expression (∆T1 − ∆T2)2/(∆T1∆T2)
appears twice and eliminate multiple evaluations at
simulation.

The thermal resistance, R, between the hot and cold
side can be decomposed into four terms

R � RA + Rw + RB + R f (10)

where RA and RB are the thermal contact resistances
between the liquid in the ducts and the wall, Rw is the
thermal resistance of the wall, R f is the thermal fouling
resistance due to deposits and dirt on the wall.

The contact resistances between a liquid and the
wall are modeled as

Ri � (hiAw)−1, i � A, B

hi � h0t qi

q0
tnh [1+ ah(Ti − T0)], i � A, B

(11)

where hi is the surface coefficient of heat transfer, Aw

is the area of the common wall between the ducts, and

record ThermalSurfaceParameters

SurfaceCoefficientOfHeatTransfer h0;

VolumeFlowRate q0;

Real n;

LinearThermalCoefficient ah;

Temperature T0 "nominal mean";

end ThermalSurfaceParameters;

record WallParameters

Area A;

Thickness d;

ThermalConductivity lambda;

ThermalSurfaceParameters SA, SB;

Real Y "corrugation factor";

ThermalResistance Rf "Fouling";

end WallParameters;

model HEXWallSection

WallConnector WA, WB;

parameter WallParameters Pars;

protected

ThermalResistance R, RA, RB, Rw;

Temperature DTlm, DT1, DT2;

equation

// Heat transfer

WA.Phi + WB.Phi = 0;

WB.Phi = DTlm/R;

// Log-mean temperature difference

DT1 = WA.T1 - WB.T1; DT2 = WA.T2 - WB.T2;

DTlm =

if (abs(DT1-DT2) > 0.05*max(abs(DT1),abs(DT2)))

then (DT1-DT2)/ln(DT1/DT2)

else if DT1*DT2 == 0 then 0.5*(DT1+DT2)

else 0.5*(DT1+DT2)*

(1-sqr(DT1-DT2)/(DT1*DT2)*

(1 + sqr(DT1-DT2)/(DT1*DT2)/2)/12);

// Thermal resistance

R = RA + Rw + RB + Pars.Rf;

RA = 1/(Pars.SA.h0*abs(WA.q/Pars.SA.q0)^Pars.SA.n*

(1+Pars.SA.ah*(WA.T-Pars.SA.T0))*Pars.A);

RB = 1/(Pars.SB.h0*abs(WB.q/Pars.SB.q0)^Pars.SB.n*

(1+Pars.SB.ah*(WB.T-Pars.SB.T0))*Pars.A);

Rw = Pars.d/(Pars.lambda*Pars.Y*Pars.A);

end HEXWallSection;

Listing 2 A model of the heat exchanger wall.

h0, nh, qh and ah are constants to be identified from
measured data and T0 is an estimation of the mean
value of lowest and highest appearing temperatures.

The thermal resistance of the wall, Rw, is calculated
as

Rw � d
λ YAw

(12)

where d is the thickness of the wall, λ is the thermal
conductivity of the wall material and Y is a correction
factor for the corrugation of the wall.

The model HEXWallSection has been implemented
as a primitive model, where the behavior is described
directly in terms of equations. When more elaborate
models are to be developed it is recommendable to
decompose the model into thermal resistors in series.

5

record HEXParameters

DuctParameters DuctA, DuctB;

WallParameters Wall;

end HEXParameters;

model HEXn

extends HEXShell;

parameter Integer n "Number of sections";

HEXDuctSection

DuctA[n](Pars(V = Pars.DuctA.V/n,

Cv = sqrt(n)*Pars.DuctA.Cv),

redeclare model Liquid = LiquidA),

DuctB[n](Pars(V = Pars.DuctB.V/n,

Cv = sqrt(n)*Pars.DuctB.Cv),

redeclare model Liquid = LiquidB);

HEXWallSection

Wall[n](Pars = WallPartPars(fraction = 1.0/n,

Wall = Pars.Wall));

equation

connect (A1, DuctA[1].Port1);

connect (B1, DuctB[1].Port1);

for i in 1:n-1 loop

connect (DuctA[i].Port2, DuctA[i+1].Port1);

connect (DuctB[i].Port2, DuctB[i+1].Port1);

end for ;

connect (DuctA[n].Port2, A2);

connect (DuctB[n].Port2, B2);

for i in 1:n loop

connect (DuctA[i].Wall, Wall[i].WA);

connect (DuctB[i].Wall, Wall[i].WB);

end for ;

end HEXn;

Listing 3 The base model of a heat exchanger.

A HEAT EXCHANGER MODEL

A model of a heat exchanger can now be defined by
putting together a number of duct section models and
wall section models. See Listing 3.

The record type HEXParameters, which is referred by
the shell model HEXShell, is defined as the aggregation
of the parameters of the two ducts and the wall.

The model HEXn uses HEXShell as a base class and
specifies in addition two arrays of duct section models
and one array of wall section models, which are of the
same length, parameterized by n. The equation section
connects the pieces to each other and to the ports of
HEXn.

The declarations of the component models include hi-
erarchical parameter propagation to set default values
for the parameters of the elements. Some of the parame-
ters have to be recalculated, since the section parts have
other physical dimensions than the heat exchanger it-
self. To explain how this is done, let us in more detail
discuss one of the declarations, for example

HEXDuctSection

DuctA[n] (Pars(V = Pars.DuctA.V/n,

Cv = sqrt(n)*Pars.DuctA.Cv),

redeclare model Liquid = LiquidA);

The declaration sets the two simple parameters Pars.V

and Pars.Cv individually in terms of the parameters

of HEXn. The construct V = Pars.DuctA.V/n means that
the default value of DuctA[i].Pars.V should be set to
Pars.DuctA.V/n for 1 ≤ i ≤ n. Note, that the right hand
side is resolved in the scope of HEXn. The declaration
also sets an actual model LiquidA to the virtual model
Liquid.

The wall has more parameters, where all but two
parameters should just be copied when propagated to its
sections. It is convenient to use a function for this since
it allows multiple assignments. A function declaration
is similar to a class declaration, but it starts with the
keyword function. The input arguments are marked
with the keyword input and the result arguments of
the function are marked with the keyword output.
Functions have an algorithm section instead of an
equation section. The algorithm section should contain
ordered assignment statements, if-then-else constructs
and loops.

function WallPartPars

input Real fraction;

input WallParameters Wall;

output WallParameters WallPart;

algorithm

WallPart := Wall;

WallPart.A := fraction*Wall.A;

WallPart.Rf := Wall.Rf/fraction;

end WallPartPars;

All parameters are copied in the first statement. Then
two of them are modified.

VALIDATION OF THE MODEL

When this is written in August 1997, there is yet
no Modelica translator which can transform the heat
exchanger model developed above to a representation
which can be simulated. There is a translator that can
handle a subset of Modelica, but it cannot handle arrays
of components.

The mathematical model described above has ear-
lier been implemented in the object-oriented language
Omola [Mattsson et al. (1993), Andersson (1994)] and
simulated in the interactive environment OmSim. The
Omola model was validated against measurements from
a heat exchanger of type CB50 from Alfa-Laval Ther-
mal. A description of the experiments and comparisons
done can be found in Ericsson and Östberg (1993). The
result of the validation is that there is a good agreement
between simulated and measured behavior. The Omola
model and the result of the validation have also been
published in Mattsson et al. (1994).

To indicate that the mathematical model developed
above is good, we will here show a typical result from
that validation. In the experiment the flow of hot water
from the district heating unit was kept constant with
a rate of 0.25 l/s and the consumption of tap water
was varied as shown in Figure 4. For CB50 the vol-
ume of each duct is 0.094 liters and the area of the heat
transporting wall is 1.1 m2. The measured time series
of the tap water flow was used as input to a simula-

6

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

Flow rate [l/s]
Tap water

Hot water

Time [s]

0 200 400 600 800 1000 1200
0

20

40

60

Temperature [○ C]
Hot water in

Tap water out

Hot water out

Tap water in

Time [s]
Figure 4 Result of a validation experiment. The upper
figure shows measured flow rates and the lower figure
shows measured temperatures (dashed lines) and simulated
temperatures (solid lines).

tion model where the heat exchanger was modeled by
three sections. The simulated and measured tempera-
tures at the outlets are shown in Figure 4. The agree-
ment between measured and simulated temperatures at
the outlets are very good. The static error on the hot side
may depend on bad positioning of the temperature sen-
sor. All temperature sensors were calibrated carefully
before the experiments.

CONCLUSIONS

An object-oriented model of a heat exchanger unit oper-
ating under normal conditions has been developed. The
model has been validated against measurements from a
real system and the agreement between measured and
simulated behavior is very good.

Use of the new general object-oriented modeling lan-
guage Modelica has been illustrated and discussed in
detail for an important technical system. It has been
demonstrated how Modelica promotes flexible model
components. In particular it is demonstrated that Mod-
elica indeed supports decomposition of media properties
from physical properties of the heat exchanger. It is very
easy to change media or the complexity of media models.

It is not feasible to make a model that describes
all situations equally well. In normal operation of a
heat exchanger, the flows do not change directions.
The model developed can from a structural point of
view handle flows that change directions. However, all
behaviour descriptions are not good for small flows.
For example, the model for the heat transfer between

a liquid and the wall describes the behaviour for a
forced flow at stationary conditions. It means that the
model does not predict any heat transfer for zero flow
rate. However, the use of object-oriented ideas makes it
possible to easily modify the model when the equations
are available.

Modelica is designed to support reuse of model
knowledge. The ideal world is that a user who wants
to solve a real problem finds a ready-made model in
his model library. The second best option is that he
is able to develop the desired model by just putting
together components from the model library by using a
graphical editor. This paper focuses on development of
such library components for heat exchangers. The need
for flexible and reliable model components means that
a developer of such a model library must define general
and parameterized components and he or she must
also provide redundant information such as declaration
of variables to allow automatic consistency checking.
Modelica supports this task very well.

Acknowledgements
The work has been supported by the Swedish Na-
tional Board for Technical Development under project
P9304688 “Modeling and simulation of complex sys-
tems” and by Sydkraft under project 391 “Modeling and
control of energy processes”. The provision of a heat ex-
changer system for experiments from Alfa Laval Ther-
mal is gratefully acknowledged.

REFERENCES

ANDERSSON, M. (1994): Object-Oriented Modeling and Simula-
tion of Hybrid Systems. PhD thesis ISRN LUTFD2/TFRT-
-1043--SE, Department of Automatic Control, Lund Insti-
tute of Technology, Lund, Sweden.

ELMQVIST, H. and S. E. MATTSSON (1997a): “An introduction to
the physical modeling language Modelica.” In Proceedings
of the 1997 European Simulation Symposium (ESS’97).
The Society for Computer Simulation, Passau, Germany.

ELMQVIST, H. and S. E. MATTSSON (1997b): “Modelica —
The next generation modeling language, An international
design effort.” In Proceedings of the 1st World Congress
on System Simulation. Singapore.

ERICSSON, M. and P. ÖSTBERG (1993): “Dynamisk provning av
värmeväxlarsystem (Dynamic testing of heat exchanger
systems).” Master Thesis ISRN LUTFD2/TFRT--5490--
SE. Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden.

HOLMAN, J. P. (1972): Heat Transfer, third edition. McGraw-
Hill Book Company.

MATTSSON, S. E., M. ANDERSSON, and K. J. ÅSTRÖM (1993):
“Object-oriented modeling and simulation.” In LINKENS,
Ed., CAD for Control Systems, pp. 31–69. Marcel Dekker,
Inc., New York.

MATTSSON, S. E., M. ERICSON, and P. ÖSTBERG (1994): “An
object-oriented model of a heat-exchanger unit.” In Pro-
ceedings of the European Simulation Multiconference,
ESM’94, pp. 297–303. SCS, The Society for Computer Sim-
ulation, Barcelona, Spain.

7

